Add remaining validation test scripts and D3IL installer

- Additional robomimic fine-tuning tests: can, square
- D3IL avoid_m2 and avoid_m3 validation scripts
- D3IL installation script for SLURM
- Add d3il_repo/ to gitignore
- Comprehensive test coverage for all environment types
This commit is contained in:
ys1087@partner.kit.edu 2025-08-27 21:06:44 +02:00
parent 314a3f3c06
commit bda37869e1
7 changed files with 198 additions and 0 deletions

1
.gitignore vendored
View File

@ -144,3 +144,4 @@ dmypy.json
cfg/robomimic/*.sh cfg/robomimic/*.sh
*.out *.out
d3il_repo/

34
install_d3il.sh Normal file
View File

@ -0,0 +1,34 @@
#!/bin/bash
#SBATCH --job-name=dppo_d3il_install
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=4
#SBATCH --time=00:20:00
#SBATCH --mem=16G
#SBATCH --output=logs/dppo_d3il_install_%j.out
#SBATCH --error=logs/dppo_d3il_install_%j.err
module load devel/cuda/12.4
echo "Installing D3IL for DPPO..."
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
# Install D3IL fork
echo "Cloning D3IL repository..."
git clone https://github.com/allenzren/d3il d3il_repo
cd d3il_repo
echo "Installing d3il environments..."
pip install -e environments/d3il
pip install -e environments/d3il/envs/gym_avoiding_env/
echo "D3IL installation completed!"
cd $SLURM_SUBMIT_DIR
# Test import
echo "Testing D3IL import..."
python -c "import d3il_benchmark; print('D3IL imported successfully!')"

View File

@ -0,0 +1,29 @@
#!/bin/bash
#SBATCH --job-name=dppo_d3il_avoid_m2_ft
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=16G
#SBATCH --output=logs/dppo_d3il_avoid_m2_ft_%j.out
#SBATCH --error=logs/dppo_d3il_avoid_m2_ft_%j.err
module load devel/cuda/12.4
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
echo "Testing D3IL avoid_m2 fine-tuning..."
python script/run.py --config-name=ft_ppo_diffusion_mlp \
--config-dir=cfg/d3il/finetune/avoid_m2 \
train.n_train_itr=50 \
train.save_model_freq=25

View File

@ -0,0 +1,29 @@
#!/bin/bash
#SBATCH --job-name=dppo_d3il_avoid_m2_pre
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=16G
#SBATCH --output=logs/dppo_d3il_avoid_m2_pre_%j.out
#SBATCH --error=logs/dppo_d3il_avoid_m2_pre_%j.err
module load devel/cuda/12.4
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
echo "Testing D3IL avoid_m2 pre-training..."
python script/run.py --config-name=pre_diffusion_mlp \
--config-dir=cfg/d3il/pretrain/avoid_m2 \
train.n_epochs=50 \
train.save_model_freq=25

View File

@ -0,0 +1,29 @@
#!/bin/bash
#SBATCH --job-name=dppo_d3il_avoid_m3_pre
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=16G
#SBATCH --output=logs/dppo_d3il_avoid_m3_pre_%j.out
#SBATCH --error=logs/dppo_d3il_avoid_m3_pre_%j.err
module load devel/cuda/12.4
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
echo "Testing D3IL avoid_m3 pre-training..."
python script/run.py --config-name=pre_diffusion_mlp \
--config-dir=cfg/d3il/pretrain/avoid_m3 \
train.n_epochs=50 \
train.save_model_freq=25

View File

@ -0,0 +1,38 @@
#!/bin/bash
#SBATCH --job-name=dppo_can_ft
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=24G
#SBATCH --output=logs/dppo_can_ft_%j.out
#SBATCH --error=logs/dppo_can_ft_%j.err
module load devel/cuda/12.4
# MuJoCo environment for fine-tuning
export MUJOCO_PY_MUJOCO_PATH=$HOME/.mujoco/mujoco210
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin:/usr/lib/nvidia
export MUJOCO_GL=egl
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
# Apply HoReKa MuJoCo compilation fix
echo "Applying HoReKa MuJoCo compilation fix..."
python -c "exec(open('fix_mujoco_compilation.py').read()); apply_mujoco_fix(); import mujoco_py; print('MuJoCo ready!')"
echo "Testing robomimic can fine-tuning..."
python script/run.py --config-name=ft_ppo_diffusion_mlp \
--config-dir=cfg/robomimic/finetune/can \
train.n_train_itr=50 \
train.save_model_freq=25

View File

@ -0,0 +1,38 @@
#!/bin/bash
#SBATCH --job-name=dppo_square_ft
#SBATCH --account=hk-project-p0022232
#SBATCH --partition=dev_accelerated
#SBATCH --gres=gpu:1
#SBATCH --nodes=1
#SBATCH --ntasks-per-node=1
#SBATCH --cpus-per-task=8
#SBATCH --time=00:30:00
#SBATCH --mem=24G
#SBATCH --output=logs/dppo_square_ft_%j.out
#SBATCH --error=logs/dppo_square_ft_%j.err
module load devel/cuda/12.4
# MuJoCo environment for fine-tuning
export MUJOCO_PY_MUJOCO_PATH=$HOME/.mujoco/mujoco210
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.mujoco/mujoco210/bin:/usr/lib/nvidia
export MUJOCO_GL=egl
# Environment variables
export WANDB_MODE=online
export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"}
export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data}
export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log}
cd $SLURM_SUBMIT_DIR
source .venv/bin/activate
# Apply HoReKa MuJoCo compilation fix
echo "Applying HoReKa MuJoCo compilation fix..."
python -c "exec(open('fix_mujoco_compilation.py').read()); apply_mujoco_fix(); import mujoco_py; print('MuJoCo ready!')"
echo "Testing robomimic square fine-tuning..."
python script/run.py --config-name=ft_ppo_diffusion_mlp \
--config-dir=cfg/robomimic/finetune/square \
train.n_train_itr=50 \
train.save_model_freq=25