defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.eval.eval_diffusion_agent.EvalDiffusionAgent name: ${env_name}_eval_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/d3il-eval/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: normalization_path: ${oc.env:DPPO_DATA_DIR}/d3il/avoid_m1/normalization.npz seed: 42 device: cuda:0 env_name: avoiding-m5 obs_dim: 4 action_dim: 2 denoising_steps: 20 cond_steps: 1 horizon_steps: 4 act_steps: 4 ft_denoising_steps: 0 n_steps: 25 render_num: 40 plotter: _target_: env.plot_traj.TrajPlotter env_type: avoid normalization_path: ${normalization_path} env: n_envs: 40 name: ${env_name} max_episode_steps: 100 reset_at_iteration: True save_video: False best_reward_threshold_for_success: 2 save_full_observations: True wrappers: d3il_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} pass_full_observations: ${env.save_full_observations} reset_within_step: False model: _target_: model.diffusion.diffusion_eval_ft.DiffusionEval ft_denoising_steps: ${ft_denoising_steps} predict_epsilon: True denoised_clip_value: 1.0 # network_path: ${base_policy_path} network: _target_: model.diffusion.mlp_diffusion.DiffusionMLP time_dim: 16 mlp_dims: [512, 512, 512] activation_type: ReLU residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device}