defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ibrl_agent.TrainIBRLAgent name: ${env_name}_ibrl_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/halfcheetah-medium-v2_pre_gaussian_mlp_ta1/2024-09-28_18-48-54_42/checkpoint/state_500.pt offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/train.npz seed: 42 device: cuda:0 env_name: halfcheetah-medium-v2 obs_dim: 17 action_dim: 6 cond_steps: 1 horizon_steps: 1 act_steps: 1 env: n_envs: 1 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: ibrl-${env_name} run: ${now:%H-%M-%S}_${name} train: n_train_itr: 300000 n_steps: 1 gamma: 0.99 actor_lr: 1e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 critic_lr: 1e-4 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 save_model_freq: 50000 val_freq: 2000 render: freq: 1 num: 0 log_freq: 200 # IBRL specific batch_size: 256 target_ema_rate: 0.01 scale_reward_factor: 1 critic_num_update: 5 buffer_size: 300000 n_eval_episode: 10 n_explore_steps: 0 update_freq: 2 model: _target_: model.rl.gaussian_ibrl.IBRL_Gaussian randn_clip_value: 3 n_critics: 5 soft_action_sample: True soft_action_sample_beta: 10 network_path: ${base_policy_path} actor: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [256, 256, 256] activation_type: Mish fixed_std: 0.1 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} critic: _target_: model.common.critic.CriticObsAct mlp_dims: [256, 256, 256] activation_type: ReLU use_layernorm: True double_q: False # use ensemble cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} action_dim: ${action_dim} action_steps: ${act_steps} horizon_steps: ${horizon_steps} device: ${device} offline_dataset: _target_: agent.dataset.sequence.StitchedSequenceQLearningDataset dataset_path: ${offline_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device} max_n_episodes: 50