""" Environment wrapper for Robomimic environments with state observations. Also return done=False since we do not terminate episode early. Modified from https://github.com/real-stanford/diffusion_policy/blob/main/diffusion_policy/env/robomimic/robomimic_lowdim_wrapper.py For consistency, we will use Dict{} for the observation space, with the key "state" for the state observation. """ import numpy as np import gym from gym import spaces import imageio class RobomimicLowdimWrapper(gym.Env): def __init__( self, env, normalization_path=None, low_dim_keys=[ "robot0_eef_pos", "robot0_eef_quat", "robot0_gripper_qpos", "object", ], clamp_obs=False, init_state=None, render_hw=(256, 256), render_camera_name="agentview", ): self.env = env self.init_state = init_state self.render_hw = render_hw self.render_camera_name = render_camera_name self.video_writer = None self.clamp_obs = clamp_obs # set up normalization self.normalize = normalization_path is not None if self.normalize: normalization = np.load(normalization_path) self.obs_min = normalization["obs_min"] self.obs_max = normalization["obs_max"] self.action_min = normalization["action_min"] self.action_max = normalization["action_max"] # setup spaces low = np.full(env.action_dimension, fill_value=-1) high = np.full(env.action_dimension, fill_value=1) self.action_space = gym.spaces.Box( low=low, high=high, shape=low.shape, dtype=low.dtype, ) self.obs_keys = low_dim_keys self.observation_space = spaces.Dict() obs_example_full = self.env.get_observation() obs_example = np.concatenate( [obs_example_full[key] for key in self.obs_keys], axis=0 ) low = np.full_like(obs_example, fill_value=-1) high = np.full_like(obs_example, fill_value=1) self.observation_space["state"] = spaces.Box( low=low, high=high, shape=low.shape, dtype=np.float32, ) def normalize_obs(self, obs): obs = 2 * ( (obs - self.obs_min) / (self.obs_max - self.obs_min + 1e-6) - 0.5 ) # -> [-1, 1] if self.clamp_obs: obs = np.clip(obs, -1, 1) return obs def unnormalize_action(self, action): action = (action + 1) / 2 # [-1, 1] -> [0, 1] return action * (self.action_max - self.action_min) + self.action_min def get_observation(self, raw_obs): obs = {"state": np.concatenate([raw_obs[key] for key in self.obs_keys], axis=0)} if self.normalize: obs["state"] = self.normalize_obs(obs["state"]) return obs def seed(self, seed=None): if seed is not None: np.random.seed(seed=seed) else: np.random.seed() def reset(self, options={}, **kwargs): """Ignore passed-in arguments like seed""" # Close video if exists if self.video_writer is not None: self.video_writer.close() self.video_writer = None # Start video if specified if "video_path" in options: self.video_writer = imageio.get_writer(options["video_path"], fps=30) # Call reset new_seed = options.get( "seed", None ) # used to set all environments to specified seeds if self.init_state is not None: # always reset to the same state to be compatible with gym raw_obs = self.env.reset_to({"states": self.init_state}) elif new_seed is not None: self.seed(seed=new_seed) raw_obs = self.env.reset() else: # random reset raw_obs = self.env.reset() return self.get_observation(raw_obs) def step(self, action): if self.normalize: action = self.unnormalize_action(action) raw_obs, reward, done, info = self.env.step(action) obs = self.get_observation(raw_obs) # render if specified if self.video_writer is not None: video_img = self.render(mode="rgb_array") self.video_writer.append_data(video_img) return obs, reward, False, info def render(self, mode="rgb_array"): h, w = self.render_hw return self.env.render( mode=mode, height=h, width=w, camera_name=self.render_camera_name, )