defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.pretrain.train_gaussian_agent.TrainGaussianAgent name: avoid_m3_pre_gaussian_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/d3il-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} train_dataset_path: ${oc.env:DPPO_DATA_DIR}/d3il/avoid_m3/train.npz seed: 42 device: cuda:0 env: avoid mode: d58_r12 # M3, desired modes 5 and 8, required modes 1 and 2 obs_dim: 4 action_dim: 2 horizon_steps: 4 cond_steps: 1 wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: d3il-${env}-pretrain run: ${now:%H-%M-%S}_${name} train: n_epochs: 5000 batch_size: 16 learning_rate: 1e-4 weight_decay: 1e-6 lr_scheduler: first_cycle_steps: 5000 warmup_steps: 100 min_lr: 1e-5 save_model_freq: 500 model: _target_: model.common.gaussian.GaussianModel network: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [256, 256, 256] # smaller MLP for less overfitting activation_type: ReLU residual_style: True fixed_std: 0.1 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} horizon_steps: ${horizon_steps} device: ${device} ema: decay: 0.995 train_dataset: _target_: agent.dataset.sequence.StitchedSequenceDataset dataset_path: ${train_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device}