defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_qsm_diffusion_agent.TrainQSMDiffusionAgent name: ${env_name}_qsm_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/halfcheetah-medium-v2_pre_diffusion_mlp_ta4_td20/2024-06-12_23-04-42/checkpoint/state_3000.pt normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz seed: 42 device: cuda:0 env_name: halfcheetah-medium-v2 obs_dim: 17 action_dim: 6 denoising_steps: 20 cond_steps: 1 horizon_steps: 4 act_steps: 4 env: n_envs: 40 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: gym-${env_name}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 5 n_steps: 500 gamma: 0.99 actor_lr: 1e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # QSM specific scale_reward_factor: 0.01 q_grad_coeff: 10 critic_tau: 0.005 buffer_size: 25000 replay_ratio: 16 batch_size: 1000 model: _target_: model.diffusion.diffusion_qsm.QSMDiffusion # Sampling HPs min_sampling_denoising_std: 0.10 randn_clip_value: 3 # network_path: ${base_policy_path} actor: _target_: model.diffusion.mlp_diffusion.DiffusionMLP horizon_steps: ${horizon_steps} action_dim: ${action_dim} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} time_dim: 16 mlp_dims: [512, 512, 512] activation_type: ReLU residual_style: True critic: _target_: model.common.critic.CriticObsAct action_dim: ${action_dim} action_steps: ${act_steps} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device}