defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.pretrain.train_diffusion_agent.TrainDiffusionAgent name: ${env}_pre_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/furniture-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} train_dataset_path: ${oc.env:DPPO_DATA_DIR}/furniture/${task}_${randomness}/train.npz seed: 42 device: cuda:0 task: lamp randomness: low env: ${task}_${randomness}_dim obs_dim: 44 action_dim: 10 denoising_steps: 100 horizon_steps: 8 cond_steps: 1 wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: furniture-${task}-${randomness}-pretrain run: ${now:%H-%M-%S}_${name} train: n_epochs: 8000 batch_size: 256 learning_rate: 1e-4 weight_decay: 1e-6 lr_scheduler: first_cycle_steps: 10000 warmup_steps: 100 min_lr: 1e-5 save_model_freq: 500 model: _target_: model.diffusion.diffusion.DiffusionModel predict_epsilon: True denoised_clip_value: 1.0 network: _target_: model.diffusion.mlp_diffusion.DiffusionMLP time_dim: 32 mlp_dims: [1024, 1024, 1024, 1024, 1024, 1024, 1024] cond_mlp_dims: [512, 64] use_layernorm: True # needed for larger MLP residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device} ema: decay: 0.995 train_dataset: _target_: agent.dataset.sequence.StitchedSequenceDataset dataset_path: ${train_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device}