defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.pretrain.train_gaussian_agent.TrainGaussianAgent name: ${env}_pre_gaussian_mlp_img_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} train_dataset_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env}-img/train.npz seed: 42 device: cuda:0 env: square obs_dim: 9 # proprioception only action_dim: 7 horizon_steps: 4 cond_steps: 1 img_cond_steps: 1 wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: robomimic-${env}-pretrain run: ${now:%H-%M-%S}_${name} shape_meta: obs: rgb: shape: [3, 96, 96] state: shape: [9] action: shape: [7] train: n_epochs: 4000 batch_size: 256 learning_rate: 1e-4 weight_decay: 1e-6 lr_scheduler: first_cycle_steps: 5000 warmup_steps: 100 min_lr: 1e-5 save_model_freq: 500 model: _target_: model.common.gaussian.GaussianModel network: _target_: model.common.mlp_gaussian.Gaussian_VisionMLP backbone: _target_: model.common.vit.VitEncoder obs_shape: ${shape_meta.obs.rgb.shape} num_channel: ${eval:'${shape_meta.obs.rgb.shape[0]} * ${img_cond_steps}'} # each image patch is history concatenated cfg: patch_size: 8 depth: 1 embed_dim: 128 num_heads: 4 embed_style: embed2 embed_norm: 0 augment: True spatial_emb: 128 mlp_dims: [768, 768, 768] residual_style: True fixed_std: 0.1 img_cond_steps: ${img_cond_steps} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} horizon_steps: ${horizon_steps} device: ${device} ema: decay: 0.995 train_dataset: _target_: agent.dataset.sequence.StitchedSequenceDataset use_img: True dataset_path: ${train_dataset_path} horizon_steps: ${horizon_steps} max_n_episodes: 100 cond_steps: ${cond_steps} img_cond_steps: ${img_cond_steps} device: ${device}