defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.pretrain.train_gaussian_agent.TrainGaussianAgent name: ${env}_pre_gaussian_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} train_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env}/train.npz seed: 42 device: cuda:0 env: kitchen-partial-v0 obs_dim: 60 action_dim: 9 horizon_steps: 4 cond_steps: 1 wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: gym-${env}-pretrain run: ${now:%H-%M-%S}_${name} train: n_epochs: 3000 batch_size: 128 learning_rate: 1e-3 weight_decay: 1e-6 lr_scheduler: first_cycle_steps: 3000 warmup_steps: 1 min_lr: 1e-4 save_model_freq: 500 model: _target_: model.common.gaussian.GaussianModel network: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [256, 256, 256] activation_type: Mish fixed_std: 0.1 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} horizon_steps: ${horizon_steps} device: ${device} ema: decay: 0.995 train_dataset: _target_: agent.dataset.sequence.StitchedSequenceDataset dataset_path: ${train_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device}