defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_idql_diffusion_agent.TrainIDQLDiffusionAgent name: ${env_name}_idql_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz seed: 42 device: cuda:0 env_name: hopper-medium-v2 obs_dim: 11 action_dim: 3 denoising_steps: 10 cond_steps: 1 horizon_steps: 1 act_steps: 1 env: n_envs: 10 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: gym-${env_name}-scratch run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 0 n_steps: 1000 gamma: 0.99 actor_lr: 1e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # IDQL specific scale_reward_factor: 0.01 eval_deterministic: True eval_sample_num: 10 # how many samples to score during eval critic_tau: 0.001 # rate of target q network update use_expectile_exploration: True buffer_size: 100000 # * n_envs replay_ratio: 128 batch_size: 256 model: _target_: model.diffusion.diffusion_idql.IDQLDiffusion # Sampling HPs min_sampling_denoising_std: 0.10 randn_clip_value: 3 # actor: _target_: model.diffusion.mlp_diffusion.DiffusionMLP horizon_steps: ${horizon_steps} action_dim: ${action_dim} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} time_dim: 16 mlp_dims: [512, 512, 512] activation_type: ReLU residual_style: True critic_q: _target_: model.common.critic.CriticObsAct mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} action_dim: ${action_dim} action_steps: ${act_steps} critic_v: _target_: model.common.critic.CriticObs mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device}