defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ppo_gaussian_agent.TrainPPOGaussianAgent name: ${env_name}_ft_gaussian_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/furniture-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/furniture-pretrain/lamp/lamp_med_dim_pre_gaussian_mlp_ta8/2024-06-28_16-26-56/checkpoint/state_3000.pt normalization_path: ${oc.env:DPPO_DATA_DIR}/furniture/${env.specific.furniture}_${env.specific.randomness}/normalization.pth seed: 42 device: cuda:0 env_name: ${env.specific.furniture}_${env.specific.randomness}_dim obs_dim: 44 action_dim: 10 transition_dim: ${action_dim} cond_steps: 1 horizon_steps: 8 act_steps: 8 env: n_envs: 1000 name: ${env_name} env_type: furniture max_episode_steps: 1000 best_reward_threshold_for_success: 2 specific: headless: true furniture: lamp randomness: med normalization_path: ${normalization_path} act_steps: ${act_steps} sparse_reward: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: furniture-${env.specific.furniture}-${env.specific.randomness}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 1 n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'} gamma: 0.999 actor_lr: 1e-5 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 10000 warmup_steps: 10 min_lr: 1e-6 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 10000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 50 val_freq: 10 render: freq: 1 num: 0 # PPO specific reward_scale_running: True reward_scale_const: 1.0 gae_lambda: 0.95 batch_size: 8800 update_epochs: 5 vf_coef: 0.5 target_kl: 1 model: _target_: model.rl.gaussian_ppo.PPO_Gaussian clip_ploss_coef: 0.01 randn_clip_value: 3 network_path: ${base_policy_path} actor: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: - 1024 - 1024 - 1024 - 1024 - 1024 - 1024 - 1024 - 1024 - 1024 - 1024 - 1024 activation_type: ReLU residual_style: True fixed_std: 0.04 learn_fixed_std: True std_min: 0.01 std_max: 0.2 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} transition_dim: ${transition_dim} critic: _target_: model.common.critic.CriticObs cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [512, 512, 512] activation_type: Mish residual_style: True horizon_steps: ${horizon_steps} device: ${device}