defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ppo_gaussian_img_agent.TrainPPOImgGaussianAgent name: ${env_name}_ft_gaussian_mlp_img_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/can/can_pre_gaussian_mlp_img_ta4/2024-07-28_21-54-40/checkpoint/state_1000.pt robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}-img.json normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}-img/normalization.npz seed: 42 device: cuda:0 env_name: can obs_dim: 9 action_dim: 7 transition_dim: ${action_dim} cond_steps: 1 img_cond_steps: 1 horizon_steps: 4 act_steps: 4 env: n_envs: 50 name: ${env_name} best_reward_threshold_for_success: 1 max_episode_steps: 300 save_video: False use_image_obs: True wrappers: robomimic_image: normalization_path: ${normalization_path} low_dim_keys: ['robot0_eef_pos', 'robot0_eef_quat', 'robot0_gripper_qpos'] image_keys: ['robot0_eye_in_hand_image'] shape_meta: ${shape_meta} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True shape_meta: obs: rgb: shape: [3, 96, 96] state: shape: [9] action: shape: [7] wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: robomimic-${env_name}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 200 n_critic_warmup_itr: 2 n_steps: 300 gamma: 0.999 augment: True grad_accumulate: 5 actor_lr: 1e-5 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 200 warmup_steps: 10 min_lr: 1e-5 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 200 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # PPO specific reward_scale_running: True reward_scale_const: 1.0 gae_lambda: 0.95 batch_size: 1500 logprob_batch_size: 1000 update_epochs: 10 vf_coef: 0.5 target_kl: 1 model: _target_: model.rl.gaussian_ppo.PPO_Gaussian clip_ploss_coef: 0.01 randn_clip_value: 3 network_path: ${base_policy_path} actor: _target_: model.common.mlp_gaussian.Gaussian_VisionMLP backbone: _target_: model.common.vit.VitEncoder obs_shape: ${shape_meta.obs.rgb.shape} num_channel: ${eval:'${shape_meta.obs.rgb.shape[0]} * ${img_cond_steps}'} # each image patch is history concatenated cfg: patch_size: 8 depth: 1 embed_dim: 128 num_heads: 4 embed_style: embed2 embed_norm: 0 augment: False spatial_emb: 128 mlp_dims: [512, 512, 512] residual_style: True fixed_std: 0.1 learn_fixed_std: True std_min: 0.01 std_max: 0.2 img_cond_steps: ${img_cond_steps} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} transition_dim: ${transition_dim} critic: _target_: model.common.critic.ViTCritic spatial_emb: 128 augment: False backbone: _target_: model.common.vit.VitEncoder obs_shape: ${shape_meta.obs.rgb.shape} num_channel: ${eval:'${shape_meta.obs.rgb.shape[0]} * ${img_cond_steps}'} # each image patch is history concatenated cfg: patch_size: 8 depth: 1 embed_dim: 128 num_heads: 4 embed_style: embed2 embed_norm: 0 img_cond_steps: ${img_cond_steps} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True horizon_steps: ${horizon_steps} device: ${device}