defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_qsm_diffusion_agent.TrainQSMDiffusionAgent name: ${env_name}_qsm_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/transport/transport_pre_diffusion_mlp_ta8_td20/2024-07-08_11-18-59/checkpoint/state_8000.pt robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz seed: 42 device: cuda:0 env_name: transport obs_dim: 59 action_dim: 14 transition_dim: ${action_dim} denoising_steps: 20 cond_steps: 1 horizon_steps: 8 act_steps: 8 env: n_envs: 50 name: ${env_name} best_reward_threshold_for_success: 1 max_episode_steps: 800 save_video: False wrappers: robomimic_lowdim: normalization_path: ${normalization_path} low_dim_keys: ['robot0_eef_pos', 'robot0_eef_quat', 'robot0_gripper_qpos', "robot1_eef_pos", "robot1_eef_quat", "robot1_gripper_qpos", 'object'] # same order of preprocessed observations multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: robomimic-${env_name}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 5 n_steps: 400 gamma: 0.999 actor_lr: 1e-5 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-6 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # QSM specific scale_reward_factor: 1 q_grad_coeff: 50 critic_tau: 0.005 # rate of target q network update buffer_size: 3000 batch_size: 256 replay_ratio: 32 model: _target_: model.diffusion.diffusion_qsm.QSMDiffusion # Sampling HPs min_sampling_denoising_std: 0.08 randn_clip_value: 3 # network_path: ${base_policy_path} actor: _target_: model.diffusion.mlp_diffusion.DiffusionMLP time_dim: 32 mlp_dims: [1024, 1024, 1024] residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} transition_dim: ${transition_dim} critic: _target_: model.common.critic.CriticObsAct action_dim: ${action_dim} action_steps: ${act_steps} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device}