""" Parent eval agent class. """ import os import numpy as np import torch import hydra import logging import random log = logging.getLogger(__name__) from env.gym_utils import make_async class EvalAgent: def __init__(self, cfg): super().__init__() self.cfg = cfg self.device = cfg.device self.seed = cfg.get("seed", 42) random.seed(self.seed) np.random.seed(self.seed) torch.manual_seed(self.seed) # Make vectorized env self.env_name = cfg.env.name env_type = cfg.env.get("env_type", None) self.venv = make_async( cfg.env.name, env_type=env_type, num_envs=cfg.env.n_envs, asynchronous=True, max_episode_steps=cfg.env.max_episode_steps, wrappers=cfg.env.get("wrappers", None), robomimic_env_cfg_path=cfg.get("robomimic_env_cfg_path", None), shape_meta=cfg.get("shape_meta", None), use_image_obs=cfg.env.get("use_image_obs", False), render=cfg.env.get("render", False), render_offscreen=cfg.env.get("save_video", False), obs_dim=cfg.obs_dim, action_dim=cfg.action_dim, **cfg.env.specific if "specific" in cfg.env else {}, ) if not env_type == "furniture": self.venv.seed( [self.seed + i for i in range(cfg.env.n_envs)] ) # otherwise parallel envs might have the same initial states! # isaacgym environments do not need seeding self.n_envs = cfg.env.n_envs self.n_cond_step = cfg.cond_steps self.obs_dim = cfg.obs_dim self.action_dim = cfg.action_dim self.act_steps = cfg.act_steps self.horizon_steps = cfg.horizon_steps self.max_episode_steps = cfg.env.max_episode_steps self.reset_at_iteration = cfg.env.get("reset_at_iteration", True) self.save_full_observations = cfg.env.get("save_full_observations", False) self.furniture_sparse_reward = ( cfg.env.specific.get("sparse_reward", False) if "specific" in cfg.env else False ) # furniture specific, for best reward calculation # Build model and load checkpoint self.model = hydra.utils.instantiate(cfg.model) # Eval params self.n_steps = cfg.n_steps self.best_reward_threshold_for_success = ( len(self.venv.pairs_to_assemble) if env_type == "furniture" else cfg.env.best_reward_threshold_for_success ) # Logging, rendering self.logdir = cfg.logdir self.render_dir = os.path.join(self.logdir, "render") self.result_path = os.path.join(self.logdir, "result.npz") os.makedirs(self.render_dir, exist_ok=True) self.n_render = cfg.render_num self.render_video = cfg.env.get("save_video", False) assert self.n_render <= self.n_envs, "n_render must be <= n_envs" assert not ( self.n_render <= 0 and self.render_video ), "Need to set n_render > 0 if saving video" self.traj_plotter = ( hydra.utils.instantiate(cfg.plotter) if "plotter" in cfg else None ) def run(self): pass def reset_env_all(self, verbose=False, options_venv=None, **kwargs): if options_venv is None: options_venv = [ {k: v for k, v in kwargs.items()} for _ in range(self.n_envs) ] obs_venv = self.venv.reset_arg(options_list=options_venv) # convert to OrderedDict if obs_venv is a list of dict if isinstance(obs_venv, list): obs_venv = { key: np.stack([obs_venv[i][key] for i in range(self.n_envs)]) for key in obs_venv[0].keys() } if verbose: for index in range(self.n_envs): logging.info( f"<-- Reset environment {index} with options {options_venv[index]}" ) return obs_venv def reset_env(self, env_ind, verbose=False): task = {} obs = self.venv.reset_one_arg(env_ind=env_ind, options=task) if verbose: logging.info(f"<-- Reset environment {env_ind} with task {task}") return obs