#!/bin/bash #SBATCH --job-name=dppo_dev_test #SBATCH --account=hk-project-p0022232 #SBATCH --partition=dev_accelerated #SBATCH --gres=gpu:1 #SBATCH --nodes=1 #SBATCH --ntasks-per-node=1 #SBATCH --cpus-per-task=8 #SBATCH --time=00:30:00 #SBATCH --mem=24G #SBATCH --output=logs/dppo_dev_%j.out #SBATCH --error=logs/dppo_dev_%j.err # Load required modules module load devel/cuda/12.4 # Set environment variables for WandB export WANDB_MODE=online export WANDB_PROJECT=dppo_dev_test export DPPO_WANDB_ENTITY=${DPPO_WANDB_ENTITY:-"dominik_roth"} # Use personal account, not shared # Default paths (can be overridden by environment) export DPPO_DATA_DIR=${DPPO_DATA_DIR:-$SLURM_SUBMIT_DIR/data} export DPPO_LOG_DIR=${DPPO_LOG_DIR:-$SLURM_SUBMIT_DIR/log} # Change to project directory cd $SLURM_SUBMIT_DIR # Activate virtual environment source .venv/bin/activate # Run quick test with Gym Hopper (faster than other environments) echo "Starting DPPO dev test..." echo "Job ID: $SLURM_JOB_ID" echo "Node: $SLURM_NODELIST" echo "GPU: $CUDA_VISIBLE_DEVICES" echo "" echo "Python version: $(python --version)" echo "PyTorch version: $(python -c 'import torch; print(torch.__version__)')" echo "CUDA available: $(python -c 'import torch; print(torch.cuda.is_available())')" echo "" # Run a quick pre-training test with reduced epochs # Note: Will only log to WandB if WANDB_API_KEY and DPPO_WANDB_ENTITY are properly set python script/run.py --config-name=pre_diffusion_mlp \ --config-dir=cfg/gym/pretrain/hopper-medium-v2 \ train.n_epochs=2 \ train.save_model_freq=1 echo "Dev test completed!"