""" PPO training for Gaussian/GMM policy with pixel observations. """ import os import pickle import einops import numpy as np import torch import logging import wandb import math log = logging.getLogger(__name__) from util.timer import Timer from agent.finetune.train_ppo_gaussian_agent import TrainPPOGaussianAgent from model.common.modules import RandomShiftsAug class TrainPPOImgGaussianAgent(TrainPPOGaussianAgent): def __init__(self, cfg): super().__init__(cfg) # Image randomization self.augment = cfg.train.augment if self.augment: self.aug = RandomShiftsAug(pad=4) # Set obs dim - we will save the different obs in batch in a dict shape_meta = cfg.shape_meta self.obs_dims = {k: shape_meta.obs[k]["shape"] for k in shape_meta.obs.keys()} # Gradient accumulation to deal with large GPU RAM usage self.grad_accumulate = cfg.train.grad_accumulate def run(self): # Start training loop timer = Timer() run_results = [] last_itr_eval = False done_venv = np.zeros((1, self.n_envs)) while self.itr < self.n_train_itr: # Prepare video paths for each envs --- only applies for the first set of episodes if allowing reset within iteration and each iteration has multiple episodes from one env options_venv = [{} for _ in range(self.n_envs)] if self.itr % self.render_freq == 0 and self.render_video: for env_ind in range(self.n_render): options_venv[env_ind]["video_path"] = os.path.join( self.render_dir, f"itr-{self.itr}_trial-{env_ind}.mp4" ) # Define train or eval - all envs restart eval_mode = self.itr % self.val_freq == 0 and not self.force_train self.model.eval() if eval_mode else self.model.train() last_itr_eval = eval_mode # Reset env before iteration starts (1) if specified, (2) at eval mode, or (3) right after eval mode dones_trajs = np.zeros((self.n_steps, self.n_envs)) firsts_trajs = np.zeros((self.n_steps + 1, self.n_envs)) if self.reset_at_iteration or eval_mode or last_itr_eval: prev_obs_venv = self.reset_env_all(options_venv=options_venv) firsts_trajs[0] = 1 else: firsts_trajs[0] = ( done_venv # if done at the end of last iteration, then the envs are just reset ) # Holder obs_trajs = { k: np.empty((0, self.n_envs, self.n_cond_step, *self.obs_dims[k])) for k in self.obs_dims } samples_trajs = np.empty( ( 0, self.n_envs, self.horizon_steps, self.action_dim, ) ) reward_trajs = np.empty((0, self.n_envs)) # Collect a set of trajectories from env for step in range(self.n_steps): if step % 10 == 0: print(f"Processed step {step} of {self.n_steps}") # Select action with torch.no_grad(): cond = { key: torch.from_numpy(prev_obs_venv[key]) .float() .to(self.device) for key in self.obs_dims } samples = self.model( cond=cond, deterministic=eval_mode, ) output_venv = samples.cpu().numpy() action_venv = output_venv[:, : self.act_steps] # Apply multi-step action obs_venv, reward_venv, done_venv, info_venv = self.venv.step( action_venv ) for k in obs_trajs: obs_trajs[k] = np.vstack((obs_trajs[k], prev_obs_venv[k][None])) samples_trajs = np.vstack((samples_trajs, output_venv[None])) reward_trajs = np.vstack((reward_trajs, reward_venv[None])) dones_trajs[step] = done_venv firsts_trajs[step + 1] = done_venv prev_obs_venv = obs_venv # Summarize episode reward --- this needs to be handled differently depending on whether the environment is reset after each iteration. Only count episodes that finish within the iteration. episodes_start_end = [] for env_ind in range(self.n_envs): env_steps = np.where(firsts_trajs[:, env_ind] == 1)[0] for i in range(len(env_steps) - 1): start = env_steps[i] end = env_steps[i + 1] if end - start > 1: episodes_start_end.append((env_ind, start, end - 1)) if len(episodes_start_end) > 0: reward_trajs_split = [ reward_trajs[start : end + 1, env_ind] for env_ind, start, end in episodes_start_end ] num_episode_finished = len(reward_trajs_split) episode_reward = np.array( [np.sum(reward_traj) for reward_traj in reward_trajs_split] ) episode_best_reward = np.array( [ np.max(reward_traj) / self.act_steps for reward_traj in reward_trajs_split ] ) avg_episode_reward = np.mean(episode_reward) avg_best_reward = np.mean(episode_best_reward) success_rate = np.mean( episode_best_reward >= self.best_reward_threshold_for_success ) else: episode_reward = np.array([]) num_episode_finished = 0 avg_episode_reward = 0 avg_best_reward = 0 success_rate = 0 log.info("[WARNING] No episode completed within the iteration!") # Update models if not eval_mode: with torch.no_grad(): # apply image randomization obs_trajs["rgb"] = ( torch.from_numpy(obs_trajs["rgb"]).float().to(self.device) ) obs_trajs["state"] = ( torch.from_numpy(obs_trajs["state"]).float().to(self.device) ) if self.augment: rgb = einops.rearrange( obs_trajs["rgb"], "s e t c h w -> (s e t) c h w", ) rgb = self.aug(rgb) obs_trajs["rgb"] = einops.rearrange( rgb, "(s e t) c h w -> s e t c h w", s=self.n_steps, e=self.n_envs, ) # Calculate value and logprobs - split into batches to prevent out of memory num_split = math.ceil( self.n_envs * self.n_steps / self.logprob_batch_size ) obs_ts = [{} for _ in range(num_split)] for k in obs_trajs: obs_k = einops.rearrange( obs_trajs[k], "s e ... -> (s e) ...", ) obs_ts_k = torch.split(obs_k, self.logprob_batch_size, dim=0) for i, obs_t in enumerate(obs_ts_k): obs_ts[i][k] = obs_t values_trajs = np.empty((0, self.n_envs)) for obs in obs_ts: values = ( self.model.critic(obs, no_augment=True) .cpu() .numpy() .flatten() ) values_trajs = np.vstack( (values_trajs, values.reshape(-1, self.n_envs)) ) samples_t = einops.rearrange( torch.from_numpy(samples_trajs).float().to(self.device), "s e h d -> (s e) h d", ) samples_ts = torch.split(samples_t, self.logprob_batch_size, dim=0) logprobs_trajs = np.empty((0)) for obs_t, samples_t in zip(obs_ts, samples_ts): logprobs = ( self.model.get_logprobs(obs_t, samples_t)[0].cpu().numpy() ) logprobs_trajs = np.concatenate( ( logprobs_trajs, logprobs.reshape(-1), ) ) # normalize reward with running variance if specified if self.reward_scale_running: reward_trajs_transpose = self.running_reward_scaler( reward=reward_trajs.T, first=firsts_trajs[:-1].T ) reward_trajs = reward_trajs_transpose.T # bootstrap value with GAE if not done - apply reward scaling with constant if specified obs_venv_ts = { key: torch.from_numpy(obs_venv[key]).float().to(self.device) for key in self.obs_dims } with torch.no_grad(): next_value = ( self.model.critic(obs_venv_ts, no_augment=True) .reshape(1, -1) .cpu() .numpy() ) advantages_trajs = np.zeros_like(reward_trajs) lastgaelam = 0 for t in reversed(range(self.n_steps)): if t == self.n_steps - 1: nextvalues = next_value else: nextvalues = values_trajs[t + 1] nonterminal = 1.0 - dones_trajs[t] # delta = r + gamma*V(st+1) - V(st) delta = ( reward_trajs[t] * self.reward_scale_const + self.gamma * nextvalues * nonterminal - values_trajs[t] ) # A = delta_t + gamma*lamdba*delta_{t+1} + ... advantages_trajs[t] = lastgaelam = ( delta + self.gamma * self.gae_lambda * nonterminal * lastgaelam ) returns_trajs = advantages_trajs + values_trajs # k for environment step obs_k = { k: einops.rearrange( obs_trajs[k], "s e ... -> (s e) ...", ) for k in obs_trajs } samples_k = einops.rearrange( torch.tensor(samples_trajs).float().to(self.device), "s e h d -> (s e) h d", ) returns_k = ( torch.tensor(returns_trajs).float().to(self.device).reshape(-1) ) values_k = ( torch.tensor(values_trajs).float().to(self.device).reshape(-1) ) advantages_k = ( torch.tensor(advantages_trajs).float().to(self.device).reshape(-1) ) logprobs_k = torch.tensor(logprobs_trajs).float().to(self.device) # Update policy and critic total_steps = self.n_steps * self.n_envs inds_k = np.arange(total_steps) clipfracs = [] for update_epoch in range(self.update_epochs): # for each epoch, go through all data in batches flag_break = False np.random.shuffle(inds_k) num_batch = max(1, total_steps // self.batch_size) # skip last ones for batch in range(num_batch): start = batch * self.batch_size end = start + self.batch_size inds_b = inds_k[start:end] # b for batch obs_b = {k: obs_k[k][inds_b] for k in obs_k} samples_b = samples_k[inds_b] returns_b = returns_k[inds_b] values_b = values_k[inds_b] advantages_b = advantages_k[inds_b] logprobs_b = logprobs_k[inds_b] # get loss ( pg_loss, entropy_loss, v_loss, clipfrac, approx_kl, ratio, bc_loss, std, ) = self.model.loss( obs_b, samples_b, returns_b, values_b, advantages_b, logprobs_b, use_bc_loss=self.use_bc_loss, ) loss = ( pg_loss + entropy_loss * self.ent_coef + v_loss * self.vf_coef + bc_loss * self.bc_loss_coeff ) clipfracs += [clipfrac] # update policy and critic loss.backward() if (batch + 1) % self.grad_accumulate == 0: if self.itr >= self.n_critic_warmup_itr: if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_( self.model.actor_ft.parameters(), self.max_grad_norm, ) self.actor_optimizer.step() self.critic_optimizer.step() self.actor_optimizer.zero_grad() self.critic_optimizer.zero_grad() log.info(f"run grad update at batch {batch}") log.info( f"approx_kl: {approx_kl}, update_epoch: {update_epoch}, num_batch: {num_batch}" ) # Stop gradient update if KL difference reaches target if ( self.target_kl is not None and approx_kl > self.target_kl and self.itr >= self.n_critic_warmup_itr ): flag_break = True break if flag_break: break # Explained variation of future rewards using value function y_pred, y_true = values_k.cpu().numpy(), returns_k.cpu().numpy() var_y = np.var(y_true) explained_var = ( np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y ) # Update lr if self.itr >= self.n_critic_warmup_itr: self.actor_lr_scheduler.step() self.critic_lr_scheduler.step() # Save model if self.itr % self.save_model_freq == 0 or self.itr == self.n_train_itr - 1: self.save_model() # Log loss and save metrics run_results.append( { "itr": self.itr, } ) if self.itr % self.log_freq == 0: time = timer() if eval_mode: log.info( f"eval: success rate {success_rate:8.4f} | avg episode reward {avg_episode_reward:8.4f} | avg best reward {avg_best_reward:8.4f}" ) if self.use_wandb: wandb.log( { "success rate - eval": success_rate, "avg episode reward - eval": avg_episode_reward, "avg best reward - eval": avg_best_reward, "num episode - eval": num_episode_finished, }, step=self.itr, commit=False, ) run_results[-1]["eval_success_rate"] = success_rate run_results[-1]["eval_episode_reward"] = avg_episode_reward run_results[-1]["eval_best_reward"] = avg_best_reward else: log.info( f"{self.itr}: loss {loss:8.4f} | pg loss {pg_loss:8.4f} | value loss {v_loss:8.4f} | bc loss {bc_loss:8.4f} | reward {avg_episode_reward:8.4f} | t:{time:8.4f}" ) if self.use_wandb: wandb.log( { "loss": loss, "pg loss": pg_loss, "value loss": v_loss, "bc loss": bc_loss, "std": std, "approx kl": approx_kl, "ratio": ratio, "clipfrac": np.mean(clipfracs), "explained variance": explained_var, "avg episode reward - train": avg_episode_reward, "num episode - train": num_episode_finished, "actor lr": self.actor_optimizer.param_groups[0]["lr"], "critic lr": self.critic_optimizer.param_groups[0][ "lr" ], }, step=self.itr, commit=True, ) run_results[-1]["loss"] = loss run_results[-1]["pg_loss"] = pg_loss run_results[-1]["value_loss"] = v_loss run_results[-1]["bc_loss"] = bc_loss run_results[-1]["std"] = std run_results[-1]["approx_kl"] = approx_kl run_results[-1]["ratio"] = ratio run_results[-1]["clip_frac"] = np.mean(clipfracs) run_results[-1]["explained_variance"] = explained_var run_results[-1]["train_episode_reward"] = avg_episode_reward run_results[-1]["time"] = time with open(self.result_path, "wb") as f: pickle.dump(run_results, f) self.itr += 1