defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent name: ${env_name}_nopre_ppo_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz seed: 42 device: cuda:0 env_name: walker2d-medium-v2 obs_dim: 17 action_dim: 6 denoising_steps: 20 ft_denoising_steps: 20 cond_steps: 1 horizon_steps: 1 act_steps: 1 env: n_envs: 10 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: gym-${env_name}-scratch run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 0 n_steps: 1000 gamma: 0.99 actor_lr: 1e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 10000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # PPO specific reward_scale_running: True reward_scale_const: 1.0 gae_lambda: 0.95 batch_size: 1000 update_epochs: 10 vf_coef: 0.5 target_kl: 1 model: _target_: model.diffusion.diffusion_ppo.PPODiffusion # HP to tune gamma_denoising: 0.99 clip_ploss_coef: 0.1 clip_ploss_coef_base: 0.1 clip_ploss_coef_rate: 3 randn_clip_value: 3 min_sampling_denoising_std: 0.1 min_logprob_denoising_std: 0.1 # actor: _target_: model.diffusion.mlp_diffusion.DiffusionMLP horizon_steps: ${horizon_steps} action_dim: ${action_dim} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} time_dim: 16 mlp_dims: [512, 512, 512] activation_type: ReLU residual_style: True critic: _target_: model.common.critic.CriticObs cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True ft_denoising_steps: ${ft_denoising_steps} horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device}