defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ppo_gaussian_agent.TrainPPOGaussianAgent name: ${env_name}_m1_gmm_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/d3il-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/d3il-pretrain/m1/avoid_d56_r12_pre_gmm_mlp_ta4/2024-07-10_14-30-00/checkpoint/state_10000.pt normalization_path: ${oc.env:DPPO_DATA_DIR}/d3il/avoid_m1/normalization.npz seed: 42 device: cuda:0 env_name: avoiding-m5 mode: d56_r12 # M1, desired modes 5 and 6, required modes 1 and 2 obs_dim: 4 action_dim: 2 transition_dim: ${action_dim} cond_steps: 1 horizon_steps: 4 act_steps: 4 num_modes: 5 env: n_envs: 50 name: ${env_name} max_episode_steps: 100 reset_at_iteration: True save_video: False best_reward_threshold_for_success: 2 save_full_observations: True wrappers: d3il_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} pass_full_observations: ${env.save_full_observations} reset_within_step: False wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: d3il-${env_name}-m1-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 51 n_critic_warmup_itr: 1 n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'} gamma: 0.99 actor_lr: 1e-5 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 100 warmup_steps: 10 min_lr: 1e-5 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 100 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 100 # no eval, always train mode force_train: True render: freq: 1 num: 10 plotter: _target_: env.plot_traj.TrajPlotter env_type: avoid normalization_path: ${normalization_path} # PPO specific reward_scale_running: True reward_scale_const: 1.0 gae_lambda: 0.95 batch_size: ${eval:'round(${train.n_steps} * ${env.n_envs} / 2)'} update_epochs: 10 vf_coef: 0.5 target_kl: 1 model: _target_: model.rl.gmm_ppo.PPO_GMM clip_ploss_coef: 0.1 network_path: ${base_policy_path} actor: _target_: model.common.mlp_gmm.GMM_MLP mlp_dims: [256, 256] # smaller MLP for less overfitting activation_type: ReLU residual_style: False fixed_std: 0.1 learn_fixed_std: False num_modes: ${num_modes} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} transition_dim: ${transition_dim} critic: _target_: model.common.critic.CriticObs mlp_dims: [256, 256, 256] residual_style: True obs_dim: ${obs_dim} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device}