defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_rwr_diffusion_agent.TrainRWRDiffusionAgent name: ${env_name}_rwr_diffusion_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S} base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/halfcheetah-medium-v2_pre_diffusion_mlp_ta4_td20/2024-06-12_23-04-42/checkpoint/state_3000.pt normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz device: cuda:0 env_name: halfcheetah-medium-v2 obs_dim: 17 action_dim: 6 transition_dim: ${action_dim} denoising_steps: 20 cond_steps: 1 horizon_steps: 4 act_steps: 4 env: n_envs: 40 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: gym-${env_name}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 0 n_steps: 500 gamma: 0.99 lr: 1e-4 weight_decay: 0 lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # RWR specific max_reward_weight: 100 beta: 10 batch_size: 1000 update_epochs: 16 model: _target_: model.diffusion.diffusion_rwr.RWRDiffusion # Sampling HPs min_sampling_denoising_std: 0.1 randn_clip_value: 3 # network_path: ${base_policy_path} network: _target_: model.diffusion.mlp_diffusion.DiffusionMLP horizon_steps: ${horizon_steps} transition_dim: ${transition_dim} cond_dim: ${obs_dim} time_dim: 16 mlp_dims: [512, 512, 512] activation_type: ReLU residual_style: True horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} transition_dim: ${transition_dim} denoising_steps: ${denoising_steps} device: ${device}