defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_rlpd_agent.TrainRLPDAgent name: ${env_name}_rlpd_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/train.npz seed: 42 device: cuda:0 env_name: kitchen-complete-v0 obs_dim: 60 action_dim: 9 cond_steps: 1 horizon_steps: 1 act_steps: 1 env: n_envs: 1 name: ${env_name} max_episode_steps: 280 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 4 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: rlpd-${env_name} run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000000 n_steps: 1 gamma: 0.99 actor_lr: 3e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 3e-4 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 50000 val_freq: 5000 render: freq: 1 num: 0 log_freq: 200 # RLPD specific batch_size: 256 target_ema_rate: 0.01 scale_reward_factor: 1 critic_num_update: 10 buffer_size: 400000 n_eval_episode: 40 n_explore_steps: 0 target_entropy: ${eval:'- ${action_dim} * ${act_steps}'} init_temperature: 1 model: _target_: model.rl.gaussian_rlpd.RLPD_Gaussian randn_clip_value: 10 tanh_output: True # squash after sampling backup_entropy: True n_critics: 5 # Ensemble size for critic models actor: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [256, 256, 256] activation_type: ReLU tanh_output: False # squash after sampling instead cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} std_max: 7.3891 std_min: 0.0067 critic: _target_: model.common.critic.CriticObsAct mlp_dims: [256, 256, 256] activation_type: ReLU use_layernorm: True double_q: False # use ensemble cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} action_dim: ${action_dim} action_steps: ${act_steps} horizon_steps: ${horizon_steps} device: ${device} offline_dataset: _target_: agent.dataset.sequence.StitchedSequenceQLearningDataset dataset_path: ${offline_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device}