defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ibrl_agent.TrainIBRLAgent name: ${env_name}_ibrl_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/square_pre_gaussian_mlp_ta1/2024-09-28_13-42-43_42/checkpoint/state_5000.pt robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/train.npz seed: 42 device: cuda:0 env_name: square obs_dim: 23 action_dim: 7 cond_steps: 1 horizon_steps: 1 act_steps: 1 env: n_envs: 1 name: ${env_name} max_episode_steps: 350 # IBRL uses 300 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 1 wrappers: robomimic_lowdim: normalization_path: ${normalization_path} low_dim_keys: ['robot0_eef_pos', 'robot0_eef_quat', 'robot0_gripper_qpos', 'object'] # same order of preprocessed observations multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: ibrl-${env_name} run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000000 n_steps: 1 gamma: 0.99 actor_lr: 1e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 critic_lr: 1e-4 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 save_model_freq: 100000 val_freq: 10000 render: freq: 10000 num: 0 log_freq: 200 # IBRL specific batch_size: 256 target_ema_rate: 0.01 scale_reward_factor: 1 critic_num_update: 3 buffer_size: 400000 n_eval_episode: 40 n_explore_steps: 0 update_freq: 2 model: _target_: model.rl.gaussian_ibrl.IBRL_Gaussian randn_clip_value: 3 n_critics: 5 soft_action_sample: True soft_action_sample_beta: 10 network_path: ${base_policy_path} actor: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [1024, 1024, 1024] activation_type: ReLU dropout: 0.5 fixed_std: 0.1 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} critic: _target_: model.common.critic.CriticObsAct mlp_dims: [1024, 1024, 1024] activation_type: ReLU use_layernorm: True double_q: False # use ensemble cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} action_dim: ${action_dim} action_steps: ${act_steps} horizon_steps: ${horizon_steps} device: ${device} offline_dataset: _target_: agent.dataset.sequence.StitchedSequenceQLearningDataset dataset_path: ${offline_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device} max_n_episodes: 100