defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.eval.eval_gaussian_agent.EvalGaussianAgent name: ${env_name}_eval_gaussian_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-eval/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/hopper-medium-v2_pre_diffusion_mlp_ta4_td20/2024-06-12_23-10-05/checkpoint/state_3000.pt normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz seed: 42 device: cuda:0 env_name: hopper-medium-v2 obs_dim: 11 action_dim: 3 cond_steps: 1 horizon_steps: 1 act_steps: 1 n_steps: 1000 # each episode can take maximum (max_episode_steps / act_steps, =250 right now) steps but may finish earlier in gym. We only count episodes finished within n_steps for evaluation. render_num: 0 env: n_envs: 40 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 # success rate not relevant for gym tasks wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True model: _target_: model.common.gaussian.GaussianModel # network_path: ${base_policy_path} network: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [256, 256, 256] activation_type: Mish fixed_std: 0.1 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} horizon_steps: ${horizon_steps} device: ${device}