defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_rlpd_agent.TrainRLPDAgent name: ${env_name}_rlpd_mlp_ta${horizon_steps}_td${denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/train.npz seed: 42 device: cuda:0 env_name: walker2d-medium-v2 obs_dim: 17 action_dim: 6 denoising_steps: 20 cond_steps: 1 horizon_steps: 1 act_steps: 1 env: n_envs: 40 name: ${env_name} max_episode_steps: 1000 reset_at_iteration: False save_video: False best_reward_threshold_for_success: 3 wrappers: mujoco_locomotion_lowdim: normalization_path: ${normalization_path} multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: rlpd-gym-${env_name}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 5 n_steps: 2000 gamma: 0.99 actor_lr: 1e-4 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-4 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 1000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 100 val_freq: 10 render: freq: 1 num: 0 # RLPD specific batch_size: 512 entropy_temperature: 1.0 # alpha in RLPD paper target_ema_rate: 0.005 # rho in RLPD paper scale_reward_factor: 1.0 # multiply reward by this amount for more stable value estimation replay_ratio: 64 # number of batches to sample for each learning update buffer_size: 1000000 model: _target_: model.rl.gaussian_rlpd.RLPD_Gaussian randn_clip_value: 3 actor: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [512, 512, 512] activation_type: ReLU residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} critic: _target_: model.common.critic.CriticObsAct action_dim: ${action_dim} action_steps: ${act_steps} cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [256, 256, 256] activation_type: Mish residual_style: True use_layernorm: True horizon_steps: ${horizon_steps} device: ${device} n_critics: 2 # Ensemble size for critic models offline_dataset: _target_: agent.dataset.sequence.StitchedSequenceQLearningDataset dataset_path: ${offline_dataset_path} horizon_steps: ${horizon_steps} cond_steps: ${cond_steps} device: ${device}