defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.eval.eval_gaussian_agent.EvalGaussianAgent name: ${env_name}_eval_gaussian_mlp_ta${horizon_steps} logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-eval/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/can/can_pre_gaussian_mlp_ta4/2024-06-28_13-31-00/checkpoint/state_5000.pt robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz seed: 42 device: cuda:0 env_name: can obs_dim: 23 action_dim: 7 cond_steps: 1 horizon_steps: 4 act_steps: 4 n_steps: 300 # each episode takes max_episode_steps / act_steps steps render_num: 0 env: n_envs: 50 name: ${env_name} best_reward_threshold_for_success: 1 max_episode_steps: 300 save_video: False wrappers: robomimic_lowdim: normalization_path: ${normalization_path} low_dim_keys: ['robot0_eef_pos', 'robot0_eef_quat', 'robot0_gripper_qpos', 'object'] # same order of preprocessed observations multi_step: n_obs_steps: ${cond_steps} n_action_steps: ${act_steps} max_episode_steps: ${env.max_episode_steps} reset_within_step: True model: _target_: model.common.gaussian.GaussianModel randn_clip_value: 3 # network_path: ${base_policy_path} network: _target_: model.common.mlp_gaussian.Gaussian_MLP mlp_dims: [512, 512, 512] residual_style: True fixed_std: 0.1 cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} action_dim: ${action_dim} horizon_steps: ${horizon_steps} device: ${device}