defaults: - _self_ hydra: run: dir: ${logdir} _target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent name: ${env_name}_ft_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}_tdf${ft_denoising_steps} logdir: ${oc.env:DPPO_LOG_DIR}/furniture-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed} base_policy_path: ${oc.env:DPPO_LOG_DIR}/furniture-pretrain/lamp/lamp_low_dim_pre_diffusion_mlp_ta8_td100/2024-07-23_01-28-20/checkpoint/state_8000.pt normalization_path: ${oc.env:DPPO_DATA_DIR}/furniture/${env.specific.furniture}_${env.specific.randomness}/normalization.pth seed: 42 device: cuda:0 env_name: ${env.specific.furniture}_${env.specific.randomness}_dim obs_dim: 44 action_dim: 10 transition_dim: ${action_dim} denoising_steps: 100 ft_denoising_steps: 5 cond_steps: 1 horizon_steps: 8 act_steps: 8 use_ddim: True env: n_envs: 1000 name: ${env_name} env_type: furniture max_episode_steps: 1000 best_reward_threshold_for_success: 2 specific: headless: true furniture: lamp randomness: low normalization_path: ${normalization_path} obs_steps: ${cond_steps} act_steps: ${act_steps} sparse_reward: True wandb: entity: ${oc.env:DPPO_WANDB_ENTITY} project: furniture-${env.specific.furniture}-${env.specific.randomness}-finetune run: ${now:%H-%M-%S}_${name} train: n_train_itr: 1000 n_critic_warmup_itr: 1 n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'} gamma: 0.999 actor_lr: 1e-5 actor_weight_decay: 0 actor_lr_scheduler: first_cycle_steps: 10000 warmup_steps: 10 min_lr: 1e-6 critic_lr: 1e-3 critic_weight_decay: 0 critic_lr_scheduler: first_cycle_steps: 10000 warmup_steps: 10 min_lr: 1e-3 save_model_freq: 50 val_freq: 10 render: freq: 1 num: 0 # PPO specific reward_scale_running: True reward_scale_const: 1.0 gae_lambda: 0.95 batch_size: 8800 update_epochs: 5 vf_coef: 0.5 target_kl: 1 model: _target_: model.diffusion.diffusion_ppo.PPODiffusion # HP to tune gamma_denoising: 0.9 clip_ploss_coef: 0.001 clip_ploss_coef_base: 0.001 clip_ploss_coef_rate: 3 randn_clip_value: 3 min_sampling_denoising_std: 0.04 # use_ddim: ${use_ddim} ddim_steps: ${ft_denoising_steps} learn_eta: False eta: base_eta: 1 input_dim: ${obs_dim} mlp_dims: [256, 256] action_dim: ${action_dim} min_eta: 0.1 max_eta: 1.0 _target_: model.diffusion.eta.EtaFixed network_path: ${base_policy_path} actor: _target_: model.diffusion.mlp_diffusion.DiffusionMLP time_dim: 32 mlp_dims: [1024, 1024, 1024, 1024, 1024, 1024, 1024] cond_mlp_dims: [512, 64] use_layernorm: True # needed for larger MLP residual_style: True cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} horizon_steps: ${horizon_steps} transition_dim: ${transition_dim} critic: _target_: model.common.critic.CriticObs cond_dim: ${eval:'${obs_dim} * ${cond_steps}'} mlp_dims: [512, 512, 512] activation_type: Mish residual_style: True ft_denoising_steps: ${ft_denoising_steps} horizon_steps: ${horizon_steps} obs_dim: ${obs_dim} action_dim: ${action_dim} denoising_steps: ${denoising_steps} device: ${device}