""" MIT License Copyright (c) 2022 Naoki Katsura Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ # From https://github.com/katsura-jp/pytorch-cosine-annealing-with-warmup import math import torch from torch.optim.lr_scheduler import _LRScheduler class CosineAnnealingWarmupRestarts(_LRScheduler): """ optimizer (Optimizer): Wrapped optimizer. first_cycle_steps (int): First cycle step size. cycle_mult(float): Cycle steps magnification. Default: -1. max_lr(float): First cycle's max learning rate. Default: 0.1. min_lr(float): Min learning rate. Default: 0.001. warmup_steps(int): Linear warmup step size. Default: 0. gamma(float): Decrease rate of max learning rate by cycle. Default: 1. last_epoch (int): The index of last epoch. Default: -1. """ def __init__( self, optimizer: torch.optim.Optimizer, first_cycle_steps: int, cycle_mult: float = 1.0, max_lr: float = 0.1, min_lr: float = 0.001, warmup_steps: int = 0, gamma: float = 1.0, last_epoch: int = -1, ): assert warmup_steps < first_cycle_steps self.first_cycle_steps = first_cycle_steps # first cycle step size self.cycle_mult = cycle_mult # cycle steps magnification self.base_max_lr = max_lr # first max learning rate self.max_lr = max_lr # max learning rate in the current cycle self.min_lr = min_lr # min learning rate self.warmup_steps = warmup_steps # warmup step size self.gamma = gamma # decrease rate of max learning rate by cycle self.cur_cycle_steps = first_cycle_steps # first cycle step size self.cycle = 0 # cycle count self.step_in_cycle = last_epoch # step size of the current cycle super(CosineAnnealingWarmupRestarts, self).__init__(optimizer, last_epoch) # set learning rate min_lr self.init_lr() def init_lr(self): self.base_lrs = [] for param_group in self.optimizer.param_groups: param_group["lr"] = self.min_lr self.base_lrs.append(self.min_lr) def get_lr(self): if self.step_in_cycle == -1: return self.base_lrs elif self.step_in_cycle < self.warmup_steps: return [ (self.max_lr - base_lr) * self.step_in_cycle / self.warmup_steps + base_lr for base_lr in self.base_lrs ] else: return [ base_lr + (self.max_lr - base_lr) * ( 1 + math.cos( math.pi * (self.step_in_cycle - self.warmup_steps) / (self.cur_cycle_steps - self.warmup_steps) ) ) / 2 for base_lr in self.base_lrs ] def step(self, epoch=None): if epoch is None: epoch = self.last_epoch + 1 self.step_in_cycle = self.step_in_cycle + 1 if self.step_in_cycle >= self.cur_cycle_steps: self.cycle += 1 self.step_in_cycle = self.step_in_cycle - self.cur_cycle_steps self.cur_cycle_steps = ( int((self.cur_cycle_steps - self.warmup_steps) * self.cycle_mult) + self.warmup_steps ) else: if epoch >= self.first_cycle_steps: if self.cycle_mult == 1.0: self.step_in_cycle = epoch % self.first_cycle_steps self.cycle = epoch // self.first_cycle_steps else: n = int( math.log( ( epoch / self.first_cycle_steps * (self.cycle_mult - 1) + 1 ), self.cycle_mult, ) ) self.cycle = n self.step_in_cycle = epoch - int( self.first_cycle_steps * (self.cycle_mult**n - 1) / (self.cycle_mult - 1) ) self.cur_cycle_steps = self.first_cycle_steps * self.cycle_mult ** ( n ) else: self.cur_cycle_steps = self.first_cycle_steps self.step_in_cycle = epoch self.max_lr = self.base_max_lr * (self.gamma**self.cycle) self.last_epoch = math.floor(epoch) for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): param_group["lr"] = lr