dppo/agent/dataset/sequence.py
Allen Z. Ren e0842e71dc
v0.5 to main (#10)
* v0.5 (#9)

* update idql configs

* update awr configs

* update dipo configs

* update qsm configs

* update dqm configs

* update project version to 0.5.0
2024-10-07 16:35:13 -04:00

293 lines
11 KiB
Python

"""
Pre-training data loader. Modified from https://github.com/jannerm/diffuser/blob/main/diffuser/datasets/sequence.py
No normalization is applied here --- we always normalize the data when pre-processing it with a different script, and the normalization info is also used in RL fine-tuning.
"""
from collections import namedtuple
import numpy as np
import torch
import logging
import pickle
import random
from tqdm import tqdm
log = logging.getLogger(__name__)
Batch = namedtuple("Batch", "actions conditions")
Transition = namedtuple("Transition", "actions conditions rewards dones")
TransitionWithReturn = namedtuple(
"Transition", "actions conditions rewards dones reward_to_gos"
)
class StitchedSequenceDataset(torch.utils.data.Dataset):
"""
Load stitched trajectories of states/actions/images, and 1-D array of traj_lengths, from npz or pkl file.
Use the first max_n_episodes episodes (instead of random sampling)
Example:
states: [----------traj 1----------][---------traj 2----------] ... [---------traj N----------]
Episode IDs (determined based on traj_lengths): [---------- 1 ----------][---------- 2 ---------] ... [---------- N ---------]
Each sample is a namedtuple of (1) chunked actions and (2) a list (obs timesteps) of dictionary with keys states and images.
"""
def __init__(
self,
dataset_path,
horizon_steps=64,
cond_steps=1,
img_cond_steps=1,
max_n_episodes=10000,
use_img=False,
device="cuda:0",
):
assert (
img_cond_steps <= cond_steps
), "consider using more cond_steps than img_cond_steps"
self.horizon_steps = horizon_steps
self.cond_steps = cond_steps # states (proprio, etc.)
self.img_cond_steps = img_cond_steps
self.device = device
self.use_img = use_img
self.max_n_episodes = max_n_episodes
self.dataset_path = dataset_path
# Load dataset to device specified
if dataset_path.endswith(".npz"):
dataset = np.load(dataset_path, allow_pickle=False) # only np arrays
elif dataset_path.endswith(".pkl"):
with open(dataset_path, "rb") as f:
dataset = pickle.load(f)
else:
raise ValueError(f"Unsupported file format: {dataset_path}")
traj_lengths = dataset["traj_lengths"][:max_n_episodes] # 1-D array
total_num_steps = np.sum(traj_lengths)
# Set up indices for sampling
self.indices = self.make_indices(traj_lengths, horizon_steps)
# Extract states and actions up to max_n_episodes
self.states = (
torch.from_numpy(dataset["states"][:total_num_steps]).float().to(device)
) # (total_num_steps, obs_dim)
self.actions = (
torch.from_numpy(dataset["actions"][:total_num_steps]).float().to(device)
) # (total_num_steps, action_dim)
log.info(f"Loaded dataset from {dataset_path}")
log.info(f"Number of episodes: {min(max_n_episodes, len(traj_lengths))}")
log.info(f"States shape/type: {self.states.shape, self.states.dtype}")
log.info(f"Actions shape/type: {self.actions.shape, self.actions.dtype}")
if self.use_img:
self.images = torch.from_numpy(dataset["images"][:total_num_steps]).to(
device
) # (total_num_steps, C, H, W)
log.info(f"Images shape/type: {self.images.shape, self.images.dtype}")
def __getitem__(self, idx):
"""
repeat states/images if using history observation at the beginning of the episode
"""
start, num_before_start = self.indices[idx]
end = start + self.horizon_steps
states = self.states[(start - num_before_start) : (start + 1)]
actions = self.actions[start:end]
states = torch.stack(
[
states[max(num_before_start - t, 0)]
for t in reversed(range(self.cond_steps))
]
) # more recent is at the end
conditions = {"state": states}
if self.use_img:
images = self.images[(start - num_before_start) : end]
images = torch.stack(
[
images[max(num_before_start - t, 0)]
for t in reversed(range(self.img_cond_steps))
]
)
conditions["rgb"] = images
batch = Batch(actions, conditions)
return batch
def make_indices(self, traj_lengths, horizon_steps):
"""
makes indices for sampling from dataset;
each index maps to a datapoint, also save the number of steps before it within the same trajectory
"""
indices = []
cur_traj_index = 0
for traj_length in traj_lengths:
max_start = cur_traj_index + traj_length - horizon_steps
indices += [
(i, i - cur_traj_index) for i in range(cur_traj_index, max_start + 1)
]
cur_traj_index += traj_length
return indices
def set_train_val_split(self, train_split):
"""
Not doing validation right now
"""
num_train = int(len(self.indices) * train_split)
train_indices = random.sample(self.indices, num_train)
val_indices = [i for i in range(len(self.indices)) if i not in train_indices]
self.indices = train_indices
return val_indices
def __len__(self):
return len(self.indices)
class StitchedSequenceQLearningDataset(StitchedSequenceDataset):
"""
Extends StitchedSequenceDataset to include rewards and dones for Q learning
Do not load the last step of **truncated** episodes since we do not have the correct next state for the final step of each episode. Truncation can be determined by terminal=False but end of episode.
"""
def __init__(
self,
dataset_path,
max_n_episodes=10000,
discount_factor=1.0,
device="cuda:0",
get_mc_return=False,
**kwargs,
):
if dataset_path.endswith(".npz"):
dataset = np.load(dataset_path, allow_pickle=False)
elif dataset_path.endswith(".pkl"):
with open(dataset_path, "rb") as f:
dataset = pickle.load(f)
else:
raise ValueError(f"Unsupported file format: {dataset_path}")
traj_lengths = dataset["traj_lengths"][:max_n_episodes]
total_num_steps = np.sum(traj_lengths)
# discount factor
self.discount_factor = discount_factor
# rewards and dones(terminals)
self.rewards = (
torch.from_numpy(dataset["rewards"][:total_num_steps]).float().to(device)
)
log.info(f"Rewards shape/type: {self.rewards.shape, self.rewards.dtype}")
self.dones = (
torch.from_numpy(dataset["terminals"][:total_num_steps]).to(device).float()
)
log.info(f"Dones shape/type: {self.dones.shape, self.dones.dtype}")
super().__init__(
dataset_path=dataset_path,
max_n_episodes=max_n_episodes,
device=device,
**kwargs,
)
log.info(f"Total number of transitions using: {len(self)}")
# compute discounted reward-to-go for each trajectory
self.get_mc_return = get_mc_return
if get_mc_return:
self.reward_to_go = torch.zeros_like(self.rewards)
cumulative_traj_length = np.cumsum(traj_lengths)
prev_traj_length = 0
for i, traj_length in tqdm(
enumerate(cumulative_traj_length), desc="Computing reward-to-go"
):
traj_rewards = self.rewards[prev_traj_length:traj_length]
returns = torch.zeros_like(traj_rewards)
prev_return = 0
for t in range(len(traj_rewards)):
returns[-t - 1] = (
traj_rewards[-t - 1] + self.discount_factor * prev_return
)
prev_return = returns[-t - 1]
self.reward_to_go[prev_traj_length:traj_length] = returns
prev_traj_length = traj_length
log.info(f"Computed reward-to-go for each trajectory.")
def make_indices(self, traj_lengths, horizon_steps):
"""
skip last step of truncated episodes
"""
num_skip = 0
indices = []
cur_traj_index = 0
for traj_length in traj_lengths:
max_start = cur_traj_index + traj_length - horizon_steps
if not self.dones[cur_traj_index + traj_length - 1]: # truncation
max_start -= 1
num_skip += 1
indices += [
(i, i - cur_traj_index) for i in range(cur_traj_index, max_start + 1)
]
cur_traj_index += traj_length
log.info(f"Number of transitions skipped due to truncation: {num_skip}")
return indices
def __getitem__(self, idx):
start, num_before_start = self.indices[idx]
end = start + self.horizon_steps
states = self.states[(start - num_before_start) : (start + 1)]
actions = self.actions[start:end]
rewards = self.rewards[start : (start + 1)]
dones = self.dones[start : (start + 1)]
# Account for action horizon
if idx < len(self.indices) - self.horizon_steps:
next_states = self.states[
(start - num_before_start + self.horizon_steps) : start
+ 1
+ self.horizon_steps
] # even if this uses the first state(s) of the next episode, done=True will prevent bootstrapping. We have already filtered out cases where done=False but end of episode (truncation).
else:
# prevents indexing error, but ignored since done=True
next_states = torch.zeros_like(states)
# stack obs history
states = torch.stack(
[
states[max(num_before_start - t, 0)]
for t in reversed(range(self.cond_steps))
]
) # more recent is at the end
next_states = torch.stack(
[
next_states[max(num_before_start - t, 0)]
for t in reversed(range(self.cond_steps))
]
) # more recent is at the end
conditions = {"state": states, "next_state": next_states}
if self.use_img:
images = self.images[(start - num_before_start) : end]
images = torch.stack(
[
images[max(num_before_start - t, 0)]
for t in reversed(range(self.img_cond_steps))
]
)
conditions["rgb"] = images
if self.get_mc_return:
reward_to_gos = self.reward_to_go[start : (start + 1)]
batch = TransitionWithReturn(
actions,
conditions,
rewards,
dones,
reward_to_gos,
)
else:
batch = Transition(
actions,
conditions,
rewards,
dones,
)
return batch