dppo/cfg/gym/finetune/hopper-v2/ft_ppo_diffusion_mlp.yaml
ys1087@partner.kit.edu 0424a080c1 feat: HoReKa cluster adaptation and validation
- Updated all WandB project names to use dppo- prefix for organization
- Added flexible dev testing script for all environments
- Created organized dev_tests directory for test scripts
- Fixed MuJoCo compilation issues (added GCC compiler flags)
- Documented Python 3.10 compatibility and Furniture-Bench limitation
- Validated pre-training for Gym, Robomimic, D3IL environments
- Updated experiment tracking with validation results
- Enhanced README with troubleshooting and setup instructions
2025-08-27 14:01:51 +02:00

108 lines
2.7 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent
name: ${env_name}_ppo_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}_tdf${ft_denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/hopper-medium-v2_pre_diffusion_mlp_ta4_td20/2024-06-12_23-10-05/checkpoint/state_3000.pt
normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz
seed: 42
device: cuda:0
env_name: hopper-medium-v2
obs_dim: 11
action_dim: 3
denoising_steps: 20
ft_denoising_steps: 10
cond_steps: 1
horizon_steps: 4
act_steps: 4
env:
n_envs: 40
name: ${env_name}
max_episode_steps: 1000
reset_at_iteration: False
save_video: False
best_reward_threshold_for_success: 3 # success rate not relevant for gym tasks
wrappers:
mujoco_locomotion_lowdim:
normalization_path: ${normalization_path}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: dppo-gym-${env_name}-finetune
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 1000
n_critic_warmup_itr: 0
n_steps: 500
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# PPO specific
reward_scale_running: True
reward_scale_const: 1.0
gae_lambda: 0.95
batch_size: 50000
update_epochs: 5
vf_coef: 0.5
target_kl: 1
model:
_target_: model.diffusion.diffusion_ppo.PPODiffusion
# HP to tune
gamma_denoising: 0.99
clip_ploss_coef: 0.01
clip_ploss_coef_base: 0.01
clip_ploss_coef_rate: 3
randn_clip_value: 3
min_sampling_denoising_std: 0.1
min_logprob_denoising_std: 0.1
#
network_path: ${base_policy_path}
actor:
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
time_dim: 16
mlp_dims: [512, 512, 512]
activation_type: ReLU
residual_style: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
critic:
_target_: model.common.critic.CriticObs
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
ft_denoising_steps: ${ft_denoising_steps}
horizon_steps: ${horizon_steps}
obs_dim: ${obs_dim}
action_dim: ${action_dim}
denoising_steps: ${denoising_steps}
device: ${device}