dppo/cfg/gym/pretrain/hopper-medium-v2/pre_diffusion_mlp.yaml
ys1087@partner.kit.edu 0424a080c1 feat: HoReKa cluster adaptation and validation
- Updated all WandB project names to use dppo- prefix for organization
- Added flexible dev testing script for all environments
- Created organized dev_tests directory for test scripts
- Fixed MuJoCo compilation issues (added GCC compiler flags)
- Documented Python 3.10 compatibility and Furniture-Bench limitation
- Validated pre-training for Gym, Robomimic, D3IL environments
- Updated experiment tracking with validation results
- Enhanced README with troubleshooting and setup instructions
2025-08-27 14:01:51 +02:00

66 lines
1.5 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.pretrain.train_diffusion_agent.TrainDiffusionAgent
name: ${env}_pre_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
train_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env}/train.npz
seed: 42
device: cuda:0
env: hopper-medium-v2
obs_dim: 11
action_dim: 3
denoising_steps: 20
horizon_steps: 4
cond_steps: 1
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: dppo-gym-${env}-pretrain
run: ${now:%H-%M-%S}_${name}
train:
n_epochs: 200
batch_size: 128
learning_rate: 1e-3
weight_decay: 1e-6
lr_scheduler:
first_cycle_steps: 200
warmup_steps: 1
min_lr: 1e-4
save_model_freq: 100
model:
_target_: model.diffusion.diffusion.DiffusionModel
predict_epsilon: True
denoised_clip_value: 1.0
network:
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
time_dim: 16
mlp_dims: [512, 512, 512]
activation_type: ReLU
out_activation_type: Identity
use_layernorm: False
residual_style: True
horizon_steps: ${horizon_steps}
obs_dim: ${obs_dim}
action_dim: ${action_dim}
denoising_steps: ${denoising_steps}
device: ${device}
ema:
decay: 0.995
train_dataset:
_target_: agent.dataset.sequence.StitchedSequenceDataset
dataset_path: ${train_dataset_path}
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}