dppo/model/diffusion/diffusion_rwr.py

104 lines
2.8 KiB
Python

"""
Reward-weighted regression (RWR) for diffusion policy.
"""
import torch
import logging
import einops
log = logging.getLogger(__name__)
import torch.nn.functional as F
from model.diffusion.diffusion import DiffusionModel
from model.diffusion.sampling import make_timesteps
class RWRDiffusion(DiffusionModel):
def __init__(
self,
use_ddim=False,
# modifying denoising schedule
min_sampling_denoising_std=0.1,
**kwargs,
):
super().__init__(use_ddim=use_ddim, **kwargs)
assert not self.use_ddim, "RWR does not support DDIM"
# Minimum std used in denoising process when sampling action - helps exploration
self.min_sampling_denoising_std = min_sampling_denoising_std
# ---------- RL training ----------#
# override
def p_losses(
self,
x_start,
cond,
rewards,
t,
):
"""reward-weighted"""
device = x_start.device
# Forward process
noise = torch.randn_like(x_start, device=device)
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
# Predict
x_recon = self.network(x_noisy, t, cond=cond)
# Loss with mask
if self.predict_epsilon:
loss = F.mse_loss(x_recon, noise, reduction="none")
else:
loss = F.mse_loss(x_recon, x_start, reduction="none")
loss = einops.reduce(loss, "b h d -> b", "mean")
loss *= rewards
return loss.mean()
# ---------- Sampling ----------#
# override
@torch.no_grad()
def forward(
self,
cond,
deterministic=False,
):
"""Modifying denoising schedule"""
device = self.betas.device
B = len(cond["state"])
# Loop
x = torch.randn((B, self.horizon_steps, self.action_dim), device=device)
t_all = list(reversed(range(self.denoising_steps)))
for i, t in enumerate(t_all):
t_b = make_timesteps(B, t, device)
mean, logvar = self.p_mean_var(
x=x,
t=t_b,
cond=cond,
)
std = torch.exp(0.5 * logvar)
# Determine noise level
if deterministic and t == 0:
std = torch.zeros_like(std)
elif deterministic:
std = torch.clip(std, min=1e-3)
else:
std = torch.clip(std, min=self.min_sampling_denoising_std)
noise = torch.randn_like(x).clamp_(
-self.randn_clip_value, self.randn_clip_value
)
x = mean + std * noise
# clamp action at final step
if self.final_action_clip_value is not None and i == len(t_all) - 1:
x = torch.clamp(
x, -self.final_action_clip_value, self.final_action_clip_value
)
return x