* update from scratch configs * update gym pretraining configs - use fewer epochs * update robomimic pretraining configs - use fewer epochs * allow trajectory plotting in eval agent * add simple vit unet * update avoid pretraining configs - use fewer epochs * update furniture pretraining configs - use same amount of epochs as before * add robomimic diffusion unet pretraining configs * update robomimic finetuning configs - higher lr * add vit unet checkpoint urls * update pretraining and finetuning instructions as configs are updated
65 lines
1.5 KiB
YAML
65 lines
1.5 KiB
YAML
defaults:
|
|
- _self_
|
|
hydra:
|
|
run:
|
|
dir: ${logdir}
|
|
_target_: agent.pretrain.train_diffusion_agent.TrainDiffusionAgent
|
|
|
|
name: avoid_m3_pre_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}
|
|
logdir: ${oc.env:DPPO_LOG_DIR}/d3il-pretrain/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
|
|
train_dataset_path: ${oc.env:DPPO_DATA_DIR}/d3il/avoid_m3/train.npz
|
|
|
|
seed: 42
|
|
device: cuda:0
|
|
env: avoid
|
|
mode: d58_r12 # M3, desired modes 5 and 8, required modes 1 and 2
|
|
obs_dim: 4
|
|
action_dim: 2
|
|
denoising_steps: 20
|
|
horizon_steps: 4
|
|
cond_steps: 1
|
|
|
|
wandb:
|
|
entity: ${oc.env:DPPO_WANDB_ENTITY}
|
|
project: d3il-${env}-pretrain
|
|
run: ${now:%H-%M-%S}_${name}
|
|
|
|
train:
|
|
n_epochs: 5000
|
|
batch_size: 16
|
|
learning_rate: 1e-4
|
|
weight_decay: 1e-6
|
|
lr_scheduler:
|
|
first_cycle_steps: 5000
|
|
warmup_steps: 100
|
|
min_lr: 1e-5
|
|
save_model_freq: 500
|
|
|
|
model:
|
|
_target_: model.diffusion.diffusion.DiffusionModel
|
|
predict_epsilon: True
|
|
denoised_clip_value: 1.0
|
|
network:
|
|
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
|
|
time_dim: 16
|
|
mlp_dims: [512, 512, 512]
|
|
activation_type: ReLU
|
|
residual_style: True
|
|
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
|
|
horizon_steps: ${horizon_steps}
|
|
action_dim: ${action_dim}
|
|
horizon_steps: ${horizon_steps}
|
|
obs_dim: ${obs_dim}
|
|
action_dim: ${action_dim}
|
|
denoising_steps: ${denoising_steps}
|
|
device: ${device}
|
|
|
|
ema:
|
|
decay: 0.995
|
|
|
|
train_dataset:
|
|
_target_: agent.dataset.sequence.StitchedSequenceDataset
|
|
dataset_path: ${train_dataset_path}
|
|
horizon_steps: ${horizon_steps}
|
|
cond_steps: ${cond_steps}
|
|
device: ${device} |