* update from scratch configs * update gym pretraining configs - use fewer epochs * update robomimic pretraining configs - use fewer epochs * allow trajectory plotting in eval agent * add simple vit unet * update avoid pretraining configs - use fewer epochs * update furniture pretraining configs - use same amount of epochs as before * add robomimic diffusion unet pretraining configs * update robomimic finetuning configs - higher lr * add vit unet checkpoint urls * update pretraining and finetuning instructions as configs are updated
66 lines
1.7 KiB
YAML
66 lines
1.7 KiB
YAML
defaults:
|
|
- _self_
|
|
hydra:
|
|
run:
|
|
dir: ${logdir}
|
|
_target_: agent.eval.eval_diffusion_agent.EvalDiffusionAgent
|
|
|
|
name: ${env_name}_eval_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}
|
|
logdir: ${oc.env:DPPO_LOG_DIR}/furniture-eval/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
|
|
base_policy_path:
|
|
normalization_path: ${oc.env:DPPO_DATA_DIR}/furniture/${env.specific.furniture}_${env.specific.randomness}/normalization.pth
|
|
|
|
seed: 42
|
|
device: cuda:0
|
|
env_name: ${env.specific.furniture}_${env.specific.randomness}_dim
|
|
obs_dim: 44
|
|
action_dim: 10
|
|
denoising_steps: 100
|
|
cond_steps: 1
|
|
horizon_steps: 8
|
|
act_steps: 8
|
|
use_ddim: True
|
|
ddim_steps: 5
|
|
|
|
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
|
render_num: 0
|
|
|
|
env:
|
|
n_envs: 1000
|
|
name: ${env_name}
|
|
env_type: furniture
|
|
max_episode_steps: 1000
|
|
best_reward_threshold_for_success: 2
|
|
specific:
|
|
headless: true
|
|
furniture: lamp
|
|
randomness: low
|
|
normalization_path: ${normalization_path}
|
|
obs_steps: ${cond_steps}
|
|
act_steps: ${act_steps}
|
|
sparse_reward: True
|
|
|
|
model:
|
|
_target_: model.diffusion.diffusion.DiffusionModel
|
|
predict_epsilon: True
|
|
denoised_clip_value: 1.0
|
|
randn_clip_value: 3
|
|
#
|
|
use_ddim: ${use_ddim}
|
|
ddim_steps: ${ddim_steps}
|
|
network_path: ${base_policy_path}
|
|
network:
|
|
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
|
|
time_dim: 32
|
|
mlp_dims: [1024, 1024, 1024, 1024, 1024, 1024, 1024]
|
|
cond_mlp_dims: [512, 64]
|
|
use_layernorm: True # needed for larger MLP
|
|
residual_style: True
|
|
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
|
|
horizon_steps: ${horizon_steps}
|
|
action_dim: ${action_dim}
|
|
horizon_steps: ${horizon_steps}
|
|
obs_dim: ${obs_dim}
|
|
action_dim: ${action_dim}
|
|
denoising_steps: ${denoising_steps}
|
|
device: ${device} |