dppo/cfg/robomimic/eval/can/eval_diffusion_unet.yaml
Allen Z. Ren 1d04211666 v0.7 (#26)
* update from scratch configs

* update gym pretraining configs - use fewer epochs

* update robomimic pretraining configs - use fewer epochs

* allow trajectory plotting in eval agent

* add simple vit unet

* update avoid pretraining configs - use fewer epochs

* update furniture pretraining configs - use same amount of epochs as before

* add robomimic diffusion unet pretraining configs

* update robomimic finetuning configs - higher lr

* add vit unet checkpoint urls

* update pretraining and finetuning instructions as configs are updated
2024-11-20 15:56:23 -05:00

68 lines
1.8 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.eval.eval_diffusion_agent.EvalDiffusionAgent
name: ${env_name}_eval_diffusion_unet_ta${horizon_steps}_td${denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-eval/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path:
robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json
normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz
seed: 42
device: cuda:0
env_name: can
obs_dim: 23
action_dim: 7
denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
n_steps: 75 # each episode takes max_episode_steps / act_steps steps
render_num: 0
env:
n_envs: 40
name: ${env_name}
best_reward_threshold_for_success: 1
max_episode_steps: 300
save_video: False
wrappers:
robomimic_lowdim:
normalization_path: ${normalization_path}
low_dim_keys: ['robot0_eef_pos',
'robot0_eef_quat',
'robot0_gripper_qpos',
'object'] # same order of preprocessed observations
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
model:
_target_: model.diffusion.diffusion.DiffusionModel
predict_epsilon: True
denoised_clip_value: 1.0
randn_clip_value: 3
#
network_path: ${base_policy_path}
network:
_target_: model.diffusion.unet.Unet1D
diffusion_step_embed_dim: 16
dim: 40
dim_mults: [1, 2]
kernel_size: 5
n_groups: 8
smaller_encoder: False
cond_predict_scale: True
action_dim: ${action_dim}
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
obs_dim: ${obs_dim}
action_dim: ${action_dim}
denoising_steps: ${denoising_steps}
device: ${device}