dppo/cfg/robomimic/finetune/can/ft_ppo_gaussian_mlp_img.yaml
Allen Z. Ren 1d04211666 v0.7 (#26)
* update from scratch configs

* update gym pretraining configs - use fewer epochs

* update robomimic pretraining configs - use fewer epochs

* allow trajectory plotting in eval agent

* add simple vit unet

* update avoid pretraining configs - use fewer epochs

* update furniture pretraining configs - use same amount of epochs as before

* add robomimic diffusion unet pretraining configs

* update robomimic finetuning configs - higher lr

* add vit unet checkpoint urls

* update pretraining and finetuning instructions as configs are updated
2024-11-20 15:56:23 -05:00

148 lines
3.8 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ppo_gaussian_img_agent.TrainPPOImgGaussianAgent
name: ${env_name}_ft_gaussian_mlp_img_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/can/can_pre_gaussian_mlp_img_ta4/2024-07-28_21-54-40/checkpoint/state_1000.pt
robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}-img.json
normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}-img/normalization.npz
seed: 42
device: cuda:0
env_name: can
obs_dim: 9
action_dim: 7
cond_steps: 1
img_cond_steps: 1
horizon_steps: 4
act_steps: 4
env:
n_envs: 50
name: ${env_name}
best_reward_threshold_for_success: 1
max_episode_steps: 300
save_video: False
use_image_obs: True
wrappers:
robomimic_image:
normalization_path: ${normalization_path}
low_dim_keys: ['robot0_eef_pos',
'robot0_eef_quat',
'robot0_gripper_qpos']
image_keys: ['robot0_eye_in_hand_image']
shape_meta: ${shape_meta}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
shape_meta:
obs:
rgb:
shape: [3, 96, 96]
state:
shape: [9]
action:
shape: [7]
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: robomimic-${env_name}-finetune
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 151
n_critic_warmup_itr: 2
n_steps: 300
gamma: 0.999
augment: True
grad_accumulate: 5
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: ${train.n_train_itr}
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: ${train.n_train_itr}
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# PPO specific
reward_scale_running: True
reward_scale_const: 1.0
gae_lambda: 0.95
batch_size: 1500
logprob_batch_size: 1000
update_epochs: 10
vf_coef: 0.5
target_kl: 1
model:
_target_: model.rl.gaussian_ppo.PPO_Gaussian
clip_ploss_coef: 0.01
randn_clip_value: 3
network_path: ${base_policy_path}
actor:
_target_: model.common.mlp_gaussian.Gaussian_VisionMLP
backbone:
_target_: model.common.vit.VitEncoder
obs_shape: ${shape_meta.obs.rgb.shape}
num_channel: ${eval:'3 * ${img_cond_steps}'} # each image patch is history concatenated
img_h: ${shape_meta.obs.rgb.shape[1]}
img_w: ${shape_meta.obs.rgb.shape[2]}
cfg:
patch_size: 8
depth: 1
embed_dim: 128
num_heads: 4
embed_style: embed2
embed_norm: 0
augment: False
spatial_emb: 128
mlp_dims: [512, 512, 512]
residual_style: True
fixed_std: 0.1
learn_fixed_std: True
std_min: 0.01
std_max: 0.2
img_cond_steps: ${img_cond_steps}
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
critic:
_target_: model.common.critic.ViTCritic
spatial_emb: 128
augment: False
backbone:
_target_: model.common.vit.VitEncoder
obs_shape: ${shape_meta.obs.rgb.shape}
num_channel: ${eval:'3 * ${img_cond_steps}'} # each image patch is history concatenated
img_h: ${shape_meta.obs.rgb.shape[1]}
img_w: ${shape_meta.obs.rgb.shape[2]}
cfg:
patch_size: 8
depth: 1
embed_dim: 128
num_heads: 4
embed_style: embed2
embed_norm: 0
img_cond_steps: ${img_cond_steps}
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
device: ${device}