* update from scratch configs * update gym pretraining configs - use fewer epochs * update robomimic pretraining configs - use fewer epochs * allow trajectory plotting in eval agent * add simple vit unet * update avoid pretraining configs - use fewer epochs * update furniture pretraining configs - use same amount of epochs as before * add robomimic diffusion unet pretraining configs * update robomimic finetuning configs - higher lr * add vit unet checkpoint urls * update pretraining and finetuning instructions as configs are updated
114 lines
3.0 KiB
YAML
114 lines
3.0 KiB
YAML
defaults:
|
|
- _self_
|
|
hydra:
|
|
run:
|
|
dir: ${logdir}
|
|
_target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent
|
|
|
|
name: ${env_name}_ft_diffusion_unet_ta${horizon_steps}_td${denoising_steps}_tdf${ft_denoising_steps}
|
|
logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
|
|
base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/lift/lift_pre_diffusion_unet_ta4_td20/2024-06-29_02-49-45/checkpoint/state_8000.pt
|
|
robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json
|
|
normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz
|
|
|
|
seed: 42
|
|
device: cuda:0
|
|
env_name: lift
|
|
obs_dim: 19
|
|
action_dim: 7
|
|
denoising_steps: 20
|
|
ft_denoising_steps: 10
|
|
cond_steps: 1
|
|
horizon_steps: 4
|
|
act_steps: 4
|
|
|
|
env:
|
|
n_envs: 50
|
|
name: ${env_name}
|
|
best_reward_threshold_for_success: 1
|
|
max_episode_steps: 300
|
|
save_video: False
|
|
wrappers:
|
|
robomimic_lowdim:
|
|
normalization_path: ${normalization_path}
|
|
low_dim_keys: ['robot0_eef_pos',
|
|
'robot0_eef_quat',
|
|
'robot0_gripper_qpos',
|
|
'object'] # same order of preprocessed observations
|
|
multi_step:
|
|
n_obs_steps: ${cond_steps}
|
|
n_action_steps: ${act_steps}
|
|
max_episode_steps: ${env.max_episode_steps}
|
|
reset_within_step: True
|
|
|
|
wandb:
|
|
entity: ${oc.env:DPPO_WANDB_ENTITY}
|
|
project: robomimic-${env_name}-finetune
|
|
run: ${now:%H-%M-%S}_${name}
|
|
|
|
train:
|
|
n_train_itr: 81
|
|
n_critic_warmup_itr: 2
|
|
n_steps: 300
|
|
gamma: 0.999
|
|
actor_lr: 1e-4
|
|
actor_weight_decay: 0
|
|
actor_lr_scheduler:
|
|
first_cycle_steps: ${train.n_train_itr}
|
|
warmup_steps: 10
|
|
min_lr: 1e-4
|
|
critic_lr: 1e-3
|
|
critic_weight_decay: 0
|
|
critic_lr_scheduler:
|
|
first_cycle_steps: ${train.n_train_itr}
|
|
warmup_steps: 10
|
|
min_lr: 1e-3
|
|
save_model_freq: 100
|
|
val_freq: 10
|
|
render:
|
|
freq: 1
|
|
num: 0
|
|
# PPO specific
|
|
reward_scale_running: True
|
|
reward_scale_const: 1.0
|
|
gae_lambda: 0.95
|
|
batch_size: 7500
|
|
update_epochs: 10
|
|
vf_coef: 0.5
|
|
target_kl: 1
|
|
|
|
model:
|
|
_target_: model.diffusion.diffusion_ppo.PPODiffusion
|
|
# HP to tune
|
|
gamma_denoising: 0.99
|
|
clip_ploss_coef: 0.01
|
|
clip_ploss_coef_base: 0.001
|
|
clip_ploss_coef_rate: 3
|
|
randn_clip_value: 3
|
|
min_sampling_denoising_std: 0.1
|
|
min_logprob_denoising_std: 0.1
|
|
#
|
|
network_path: ${base_policy_path}
|
|
actor:
|
|
_target_: model.diffusion.unet.Unet1D
|
|
diffusion_step_embed_dim: 16
|
|
dim: 40
|
|
dim_mults: [1, 2]
|
|
kernel_size: 5
|
|
n_groups: 8
|
|
smaller_encoder: False
|
|
cond_predict_scale: True
|
|
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
|
|
action_dim: ${action_dim}
|
|
critic:
|
|
_target_: model.common.critic.CriticObs
|
|
mlp_dims: [256, 256, 256]
|
|
activation_type: Mish
|
|
residual_style: True
|
|
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
|
|
ft_denoising_steps: ${ft_denoising_steps}
|
|
horizon_steps: ${horizon_steps}
|
|
obs_dim: ${obs_dim}
|
|
action_dim: ${action_dim}
|
|
denoising_steps: ${denoising_steps}
|
|
device: ${device} |