dppo/cfg/robomimic/finetune/lift/ft_ppo_gmm_transformer.yaml
Allen Z. Ren 1d04211666 v0.7 (#26)
* update from scratch configs

* update gym pretraining configs - use fewer epochs

* update robomimic pretraining configs - use fewer epochs

* allow trajectory plotting in eval agent

* add simple vit unet

* update avoid pretraining configs - use fewer epochs

* update furniture pretraining configs - use same amount of epochs as before

* add robomimic diffusion unet pretraining configs

* update robomimic finetuning configs - higher lr

* add vit unet checkpoint urls

* update pretraining and finetuning instructions as configs are updated
2024-11-20 15:56:23 -05:00

103 lines
2.6 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_ppo_gaussian_agent.TrainPPOGaussianAgent
name: ${env_name}_ft_gmm_transformer_ta${horizon_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/robomimic-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
base_policy_path: ${oc.env:DPPO_LOG_DIR}/robomimic-pretrain/lift/lift_pre_gmm_transformer_ta4/2024-06-28_14-51-23/checkpoint/state_5000.pt
robomimic_env_cfg_path: cfg/robomimic/env_meta/${env_name}.json
normalization_path: ${oc.env:DPPO_DATA_DIR}/robomimic/${env_name}/normalization.npz
seed: 42
device: cuda:0
env_name: lift
obs_dim: 19
action_dim: 7
cond_steps: 1
horizon_steps: 4
act_steps: 4
num_modes: 5
env:
n_envs: 50
name: ${env_name}
best_reward_threshold_for_success: 1
max_episode_steps: 300
save_video: False
wrappers:
robomimic_lowdim:
normalization_path: ${normalization_path}
low_dim_keys: ['robot0_eef_pos',
'robot0_eef_quat',
'robot0_gripper_qpos',
'object'] # same order of preprocessed observations
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: robomimic-${env_name}-finetune
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 81
n_critic_warmup_itr: 2
n_steps: 300
gamma: 0.999
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: ${train.n_train_itr}
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: ${train.n_train_itr}
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# PPO specific
reward_scale_running: True
reward_scale_const: 1.0
gae_lambda: 0.95
batch_size: 7500
update_epochs: 10
vf_coef: 0.5
target_kl: 1
model:
_target_: model.rl.gmm_ppo.PPO_GMM
clip_ploss_coef: 0.01
network_path: ${base_policy_path}
actor:
_target_: model.common.transformer.GMM_Transformer
transformer_embed_dim: 96
transformer_num_heads: 4
transformer_num_layers: 4
fixed_std: 0.1
learn_fixed_std: True
std_min: 0.01
std_max: 0.2
num_modes: ${num_modes}
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
critic:
_target_: model.common.critic.CriticObs
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
device: ${device}