dppo/env/gym_utils/wrapper/robomimic_image.py
2024-09-11 21:09:17 -04:00

226 lines
7.1 KiB
Python

"""
Environment wrapper for Robomimic environments with image observations.
Modified from https://github.com/real-stanford/diffusion_policy/blob/main/diffusion_policy/env/robomimic/robomimic_image_wrapper.py
"""
import numpy as np
import gym
from gym import spaces
import imageio
class RobomimicImageWrapper(gym.Env):
def __init__(
self,
env,
shape_meta: dict,
normalization_path=None,
low_dim_keys=[
"robot0_eef_pos",
"robot0_eef_quat",
"robot0_gripper_qpos",
],
image_keys=[
"agentview_image",
"robot0_eye_in_hand_image",
],
clamp_obs=False,
init_state=None,
render_hw=(256, 256),
render_camera_name="agentview",
):
self.env = env
self.init_state = init_state
self.has_reset_before = False
self.render_hw = render_hw
self.render_camera_name = render_camera_name
self.video_writer = None
self.clamp_obs = clamp_obs
# set up normalization
self.normalize = normalization_path is not None
if self.normalize:
normalization = np.load(normalization_path)
self.obs_min = normalization["obs_min"]
self.obs_max = normalization["obs_max"]
self.action_min = normalization["action_min"]
self.action_max = normalization["action_max"]
# setup spaces
low = np.full(env.action_dimension, fill_value=-1)
high = np.full(env.action_dimension, fill_value=1)
self.action_space = gym.spaces.Box(
low=low,
high=high,
shape=low.shape,
dtype=low.dtype,
)
self.low_dim_keys = low_dim_keys
self.image_keys = image_keys
self.obs_keys = low_dim_keys + image_keys
observation_space = spaces.Dict()
for key, value in shape_meta["obs"].items():
shape = value["shape"]
if key.endswith("rgb"):
min_value, max_value = 0, 1
elif key.endswith("state"):
min_value, max_value = -1, 1
else:
raise RuntimeError(f"Unsupported type {key}")
this_space = spaces.Box(
low=min_value,
high=max_value,
shape=shape,
dtype=np.float32,
)
observation_space[key] = this_space
self.observation_space = observation_space
def normalize_obs(self, obs):
obs = 2 * (
(obs - self.obs_min) / (self.obs_max - self.obs_min + 1e-6) - 0.5
) # -> [-1, 1]
if self.clamp_obs:
obs = np.clip(obs, -1, 1)
return obs
def unnormalize_action(self, action):
action = (action + 1) / 2 # [-1, 1] -> [0, 1]
return action * (self.action_max - self.action_min) + self.action_min
def get_observation(self, raw_obs):
obs = {"rgb": None, "state": None} # stack rgb if multiple cameras
for key in self.obs_keys:
if key in self.image_keys:
if obs["rgb"] is None:
obs["rgb"] = raw_obs[key]
else:
obs["rgb"] = np.concatenate(
[obs["rgb"], raw_obs[key]], axis=0
) # C H W
else:
if obs["state"] is None:
obs["state"] = raw_obs[key]
else:
obs["state"] = np.concatenate([obs["state"], raw_obs[key]], axis=-1)
if self.normalize:
obs["state"] = self.normalize_obs(obs["state"])
obs["rgb"] *= 255 # [0, 1] -> [0, 255], in float64
return obs
def seed(self, seed=None):
if seed is not None:
np.random.seed(seed=seed)
else:
np.random.seed()
def reset(self, options={}, **kwargs):
"""Ignore passed-in arguments like seed"""
# Close video if exists
if self.video_writer is not None:
self.video_writer.close()
self.video_writer = None
# Start video if specified
if "video_path" in options:
self.video_writer = imageio.get_writer(options["video_path"], fps=30)
# Call reset
new_seed = options.get(
"seed", None
) # used to set all environments to specified seeds
if self.init_state is not None:
if not self.has_reset_before:
# the env must be fully reset at least once to ensure correct rendering
self.env.reset()
self.has_reset_before = True
# always reset to the same state to be compatible with gym
raw_obs = self.env.reset_to({"states": self.init_state})
elif new_seed is not None:
self.seed(seed=new_seed)
raw_obs = self.env.reset()
else:
# random reset
raw_obs = self.env.reset()
return self.get_observation(raw_obs)
def step(self, action):
if self.normalize:
action = self.unnormalize_action(action)
raw_obs, reward, done, info = self.env.step(action)
obs = self.get_observation(raw_obs)
# render if specified
if self.video_writer is not None:
video_img = self.render(mode="rgb_array")
self.video_writer.append_data(video_img)
return obs, reward, done, info
def render(self, mode="rgb_array"):
h, w = self.render_hw
return self.env.render(
mode=mode,
height=h,
width=w,
camera_name=self.render_camera_name,
)
if __name__ == "__main__":
import os
from omegaconf import OmegaConf
import json
os.environ["MUJOCO_GL"] = "egl"
cfg = OmegaConf.load("cfg/robomimic/finetune/can/ft_ppo_diffusion_mlp_img.yaml")
shape_meta = cfg["shape_meta"]
import robomimic.utils.env_utils as EnvUtils
import robomimic.utils.obs_utils as ObsUtils
import matplotlib.pyplot as plt
wrappers = cfg.env.wrappers
obs_modality_dict = {
"low_dim": (
wrappers.robomimic_image.low_dim_keys
if "robomimic_image" in wrappers
else wrappers.robomimic_lowdim.low_dim_keys
),
"rgb": (
wrappers.robomimic_image.image_keys
if "robomimic_image" in wrappers
else None
),
}
if obs_modality_dict["rgb"] is None:
obs_modality_dict.pop("rgb")
ObsUtils.initialize_obs_modality_mapping_from_dict(obs_modality_dict)
with open(cfg.robomimic_env_cfg_path, "r") as f:
env_meta = json.load(f)
env = EnvUtils.create_env_from_metadata(
env_meta=env_meta,
render=False,
render_offscreen=False,
use_image_obs=True,
)
env.env.hard_reset = False
wrapper = RobomimicImageWrapper(
env=env,
shape_meta=shape_meta,
image_keys=["robot0_eye_in_hand_image"],
)
wrapper.seed(0)
obs = wrapper.reset()
print(obs.keys())
img = wrapper.render()
wrapper.close()
plt.imshow(img)
plt.savefig("test.png")