dppo/script/dataset/process_d3il_dataset.py
2024-09-11 21:09:17 -04:00

295 lines
10 KiB
Python

"""
Process d3il dataset and save it into our custom format so it can be loaded for diffusion training.
"""
import os
import numpy as np
from tqdm import tqdm
import pickle
import random
import matplotlib.pyplot as plt
from copy import deepcopy
from agent.dataset.d3il_dataset.aligning_dataset import Aligning_Dataset
from agent.dataset.d3il_dataset.avoiding_dataset import Avoiding_Dataset
from agent.dataset.d3il_dataset.pushing_dataset import Pushing_Dataset
from agent.dataset.d3il_dataset.sorting_dataset import Sorting_Dataset
from agent.dataset.d3il_dataset.stacking_dataset import Stacking_Dataset
def make_dataset(load_path, save_dir, save_name_prefix, env_type, val_split):
if env_type == "align":
demo_dataset = Aligning_Dataset(
load_path,
action_dim=3,
obs_dim=20,
max_len_data=512,
)
elif env_type == "avoid":
demo_dataset = Avoiding_Dataset(
load_path,
action_dim=2,
obs_dim=4,
max_len_data=200,
)
elif env_type == "push":
demo_dataset = Pushing_Dataset(
load_path,
action_dim=2,
obs_dim=10,
max_len_data=512,
)
elif env_type == "sort":
# Can config number of boxes to be 2, 4, or 6.
# TODO: add other numbers of boxes
demo_dataset = Sorting_Dataset(
load_path,
action_dim=2,
obs_dim=10,
max_len_data=600,
num_boxes=2,
)
elif env_type == "stack":
demo_dataset = Stacking_Dataset(
load_path,
action_dim=8,
obs_dim=20,
max_len_data=1000,
)
else:
raise ValueError("Invalid dataset type.")
# extract length of each trajectory in the file
traj_lengths = []
actions = demo_dataset.actions
obs = demo_dataset.observations
masks = demo_dataset.masks
action_dim = actions.shape[2]
obs_dim = obs.shape[2]
for ep in range(masks.shape[0]):
traj_lengths.append(int(masks[ep].sum().item()))
traj_lengths = np.array(traj_lengths)
max_traj_length = np.max(traj_lengths)
# split indices in train and val
num_traj = len(traj_lengths)
num_train = int(num_traj * (1 - val_split))
train_indices = random.sample(range(num_traj), k=num_train)
# take the max and min of obs and action
obs_min = np.zeros((obs_dim))
obs_max = np.zeros((obs_dim))
action_min = np.zeros((action_dim))
action_max = np.zeros((action_dim))
for i in tqdm(range(len(traj_lengths))):
T = traj_lengths[i]
obs_traj = obs[i, :T].numpy()
action_traj = actions[i, :T].numpy()
obs_min = np.min(np.vstack((obs_min, np.min(obs_traj, axis=0))), axis=0)
obs_max = np.max(np.vstack((obs_max, np.max(obs_traj, axis=0))), axis=0)
action_min = np.min(
np.vstack((action_min, np.min(action_traj, axis=0))), axis=0
)
action_max = np.max(
np.vstack((action_max, np.max(action_traj, axis=0))), axis=0
)
logger.info("\n========== Basic Info ===========")
logger.info("total transitions: {}".format(np.sum(traj_lengths)))
logger.info("total trajectories: {}".format(len(traj_lengths)))
logger.info(
f"traj length mean/std: {np.mean(traj_lengths)}, {np.std(traj_lengths)}"
)
logger.info(f"traj length min/max: {np.min(traj_lengths)}, {np.max(traj_lengths)}")
logger.info(f"obs min: {obs_min}")
logger.info(f"obs max: {obs_max}")
logger.info(f"action min: {action_min}")
logger.info(f"action max: {action_max}")
# do over all indices
out_train = {}
keys = [
"observations",
"actions",
"rewards",
]
total_timesteps = actions.shape[1]
out_train["observations"] = np.empty((0, total_timesteps, obs_dim))
out_train["actions"] = np.empty((0, total_timesteps, action_dim))
out_train["rewards"] = np.empty((0, total_timesteps))
out_train["traj_length"] = []
out_val = deepcopy(out_train)
for i in tqdm(range(len(traj_lengths))):
if i in train_indices:
out = out_train
else:
out = out_val
T = traj_lengths[i]
obs_traj = obs[i].numpy()
action_traj = actions[i].numpy()
# scale to [-1, 1] for both ob and action
obs_traj = 2 * (obs_traj - obs_min) / (obs_max - obs_min + 1e-6) - 1
action_traj = (
2 * (action_traj - action_min) / (action_max - action_min + 1e-6) - 1
)
# get episode length
traj_length = T
out["traj_length"].append(traj_length)
# extract
rewards = np.zeros(total_timesteps) # no reward from d3il dataset
data_traj = {
"observations": obs_traj,
"actions": action_traj,
"rewards": rewards,
}
for key in keys:
traj = data_traj[key]
out[key] = np.vstack((out[key], traj[None]))
# plot all trajectories and save in a figure
def plot(out, name):
def get_obj_xy_list():
mid_pos = 0.5
offset = 0.075
first_level_y = -0.1
level_distance = 0.18
return [
[mid_pos, first_level_y],
[mid_pos - offset, first_level_y + level_distance],
[mid_pos + offset, first_level_y + level_distance],
[mid_pos - 2 * offset, first_level_y + 2 * level_distance],
[mid_pos, first_level_y + 2 * level_distance],
[mid_pos + 2 * offset, first_level_y + 2 * level_distance],
]
pillar_xys = get_obj_xy_list()
fig = plt.figure()
all_trajs = out["observations"] # num x timestep x obs
for traj, traj_length in zip(all_trajs, out["traj_length"]):
# unnormalize
traj = (traj + 1) / 2 # [-1, 1] -> [0, 1]
traj = traj * (obs_max - obs_min) + obs_min
plt.plot(
traj[:traj_length, 2], traj[:traj_length, 3], color=(0.3, 0.3, 0.3)
)
plt.axhline(y=0.4, color=np.array([31, 119, 180]) / 255, linestyle="-")
for xy in pillar_xys:
circle = plt.Circle(xy, 0.01, color=(0.0, 0.0, 0.0), fill=True)
plt.gca().add_patch(circle)
plt.xlabel("X pos")
plt.ylabel("Y pos")
plt.xlim([0.2, 0.8])
plt.ylim([-0.3, 0.5])
ax = plt.gca()
ax.set_aspect("equal", adjustable="box")
ax.set_facecolor("white")
plt.savefig(os.path.join(save_dir, name))
plt.close(fig)
plot(out_train, name="train-trajs.png")
plot(out_val, name="val-trajs.png")
# Save to np file
save_train_path = os.path.join(save_dir, save_name_prefix + "train.npz")
save_val_path = os.path.join(save_dir, save_name_prefix + "val.pkl")
with open(save_train_path, "wb") as f:
pickle.dump(out_train, f)
with open(save_val_path, "wb") as f:
pickle.dump(out_val, f)
normalization_save_path = os.path.join(
save_dir, save_name_prefix + "normalization.npz"
)
np.savez(
normalization_save_path,
obs_min=obs_min,
obs_max=obs_max,
action_min=action_min,
action_max=action_max,
)
# debug
logger.info("\n========== Final ===========")
logger.info(
f"Train - Number of episodes and transitions: {len(out_train['traj_length'])}, {np.sum(out_train['traj_length'])}"
)
logger.info(
f"Val - Number of episodes and transitions: {len(out_val['traj_length'])}, {np.sum(out_val['traj_length'])}"
)
logger.info(
f"Train - Mean/Std trajectory length: {np.mean(out_train['traj_length'])}, {np.std(out_train['traj_length'])}"
)
logger.info(
f"Train - Max/Min trajectory length: {np.max(out_train['traj_length'])}, {np.min(out_train['traj_length'])}"
)
if val_split > 0:
logger.info(
f"Val - Mean/Std trajectory length: {np.mean(out_val['traj_length'])}, {np.std(out_val['traj_length'])}"
)
logger.info(
f"Val - Max/Min trajectory length: {np.max(out_val['traj_length'])}, {np.min(out_val['traj_length'])}"
)
for obs_dim_ind in range(obs_dim):
obs = out_train["observations"][:, :, obs_dim_ind]
logger.info(
f"Train - Obs dim {obs_dim_ind+1} mean {np.mean(obs)} std {np.std(obs)} min {np.min(obs)} max {np.max(obs)}"
)
for action_dim_ind in range(action_dim):
action = out_train["actions"][:, :, action_dim_ind]
logger.info(
f"Train - Action dim {action_dim_ind+1} mean {np.mean(action)} std {np.std(action)} min {np.min(action)} max {np.max(action)}"
)
if val_split > 0:
for obs_dim_ind in range(obs_dim):
obs = out_val["observations"][:, :, obs_dim_ind]
logger.info(
f"Val - Obs dim {obs_dim_ind+1} mean {np.mean(obs)} std {np.std(obs)} min {np.min(obs)} max {np.max(obs)}"
)
for action_dim_ind in range(action_dim):
action = out_val["actions"][:, :, action_dim_ind]
logger.info(
f"Val - Action dim {action_dim_ind+1} mean {np.mean(action)} std {np.std(action)} min {np.min(action)} max {np.max(action)}"
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--load_path", type=str, default=".")
parser.add_argument("--save_dir", type=str, default=".")
parser.add_argument("--save_name_prefix", type=str, default="")
parser.add_argument("--env_type", type=str, default="align")
parser.add_argument("--val_split", type=float, default="0.2")
args = parser.parse_args()
os.makedirs(args.save_dir, exist_ok=True)
import logging
import datetime
os.makedirs(args.save_dir, exist_ok=True)
log_path = os.path.join(
args.save_dir,
args.save_name_prefix
+ f"_{datetime.datetime.now().strftime('%Y_%m_%d_%H_%M_%S')}.log",
)
logger = logging.getLogger("get_D4RL_dataset")
logger.setLevel(logging.INFO)
file_handler = logging.FileHandler(log_path)
file_handler.setLevel(logging.INFO) # Set the minimum level for this handler
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
make_dataset(
args.load_path,
args.save_dir,
args.save_name_prefix,
args.env_type,
args.val_split,
)