dppo/model/rl/gaussian_calql.py
Allen Z. Ren dc8e0c9edc
v0.6 (#18)
* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* Add Proficient Human (PH) Configs and Pipeline (#16)

* fix missing cfg

* add ph config

* fix how terminated flags are added to buffer in ibrl

* add ph config

* offline calql for 1M gradient updates

* bug fix: number of calql online gradient steps is the number of new transitions collected

* add sample config for DPPO with ta=1

* Sampling over both env and denoising steps in DPPO updates (#13)

* sample one from each chain

* full random sampling

* fix diffusion loss when predicting initial noise

* fix dppo inds

* fix typo

* remove print statement

---------

Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
Co-authored-by: allenzren <allen.ren@princeton.edu>

* update robomimic configs

* better calql formulation

* optimize calql and ibrl training

* optimize data transfer in ppo agents

* add kitchen configs

* re-organize config folders, rerun calql and rlpd

* add scratch gym locomotion configs

* add kitchen installation dependencies

* use truncated for termination in furniture env

* update furniture and gym configs

* update README and dependencies with kitchen

* add url for new data and checkpoints

* update demo RL configs

* update batch sizes for furniture unet configs

* raise error about dropout in residual mlp

* fix observation bug in bc loss

---------

Co-authored-by: Justin Lidard <60638575+jlidard@users.noreply.github.com>
Co-authored-by: Justin M. Lidard <jlidard@neuronic.cs.princeton.edu>
2024-10-30 19:58:06 -04:00

199 lines
6.8 KiB
Python

"""
Calibrated Conservative Q-Learning (CalQL) for Gaussian policy.
"""
import torch
import torch.nn as nn
import logging
from copy import deepcopy
import numpy as np
import einops
from model.common.gaussian import GaussianModel
log = logging.getLogger(__name__)
class CalQL_Gaussian(GaussianModel):
def __init__(
self,
actor,
critic,
network_path=None,
cql_clip_diff_min=-np.inf,
cql_clip_diff_max=np.inf,
cql_min_q_weight=5.0,
cql_n_actions=10,
**kwargs,
):
super().__init__(network=actor, network_path=None, **kwargs)
self.cql_clip_diff_min = cql_clip_diff_min
self.cql_clip_diff_max = cql_clip_diff_max
self.cql_min_q_weight = cql_min_q_weight
self.cql_n_actions = cql_n_actions
# initialize critic networks
self.critic = critic.to(self.device)
self.target_critic = deepcopy(critic).to(self.device)
# Load pre-trained checkpoint - note we are also loading the pre-trained critic here
if network_path is not None:
checkpoint = torch.load(
network_path,
map_location=self.device,
weights_only=True,
)
self.load_state_dict(
checkpoint["model"],
strict=True,
)
log.info("Loaded actor from %s", network_path)
log.info(
f"Number of network parameters: {sum(p.numel() for p in self.parameters())}"
)
def loss_critic(
self,
obs,
next_obs,
actions,
random_actions,
rewards,
returns,
terminated,
gamma,
):
B = len(actions)
# Get initial TD loss
q_data1, q_data2 = self.critic(obs, actions)
with torch.no_grad():
# repeat for action samples
next_obs_repeated = {"state": next_obs["state"].repeat_interleave(
self.cql_n_actions, dim=0
)}
# Get the next actions and logprobs
next_actions, next_logprobs = self.forward(
next_obs_repeated,
deterministic=False,
get_logprob=True,
)
next_q1, next_q2 = self.target_critic(next_obs_repeated, next_actions)
next_q = torch.min(next_q1, next_q2)
# Reshape the next_q to match the number of samples
next_q = next_q.view(B, self.cql_n_actions) # (B, n_sample)
next_logprobs = next_logprobs.view(B, self.cql_n_actions) # (B, n_sample)
# Get the max indices over the samples, and index into the next_q and next_log_probs
max_idx = torch.argmax(next_q, dim=1)
next_q = next_q[torch.arange(B), max_idx]
next_logprobs = next_logprobs[torch.arange(B), max_idx]
# Get the target Q values
target_q = rewards + gamma * (1 - terminated) * next_q
# TD loss
td_loss_1 = nn.functional.mse_loss(q_data1, target_q)
td_loss_2 = nn.functional.mse_loss(q_data2, target_q)
# Get actions and logprobs
log_rand_pi = 0.5 ** torch.prod(torch.tensor(random_actions.shape[-2:]))
pi_actions, log_pi = self.forward(
obs,
deterministic=False,
reparameterize=False,
get_logprob=True,
) # no gradient
pi_next_actions, log_pi_next = self.forward(
next_obs,
deterministic=False,
reparameterize=False,
get_logprob=True,
) # no gradient
# Random action Q values
n_random_actions = random_actions.shape[1]
obs_sample_state = {
"state": obs["state"].repeat_interleave(n_random_actions, dim=0)
}
random_actions = einops.rearrange(random_actions, "B N H A -> (B N) H A")
# Get the random action Q-values
q_rand_1, q_rand_2 = self.critic(obs_sample_state, random_actions)
q_rand_1 = q_rand_1 - log_rand_pi
q_rand_2 = q_rand_2 - log_rand_pi
# Reshape the random action Q values to match the number of samples
q_rand_1 = q_rand_1.view(B, n_random_actions) # (n_sample, B)
q_rand_2 = q_rand_2.view(B, n_random_actions)
# Policy action Q values
q_pi_1, q_pi_2 = self.critic(obs, pi_actions)
q_pi_next_1, q_pi_next_2 = self.critic(next_obs, pi_next_actions)
# Ensure calibration w.r.t. value function estimate
q_pi_1 = torch.max(q_pi_1, returns)[:, None] # (B, 1)
q_pi_2 = torch.max(q_pi_2, returns)[:, None] # (B, 1)
q_pi_next_1 = torch.max(q_pi_next_1, returns)[:, None] # (B, 1)
q_pi_next_2 = torch.max(q_pi_next_2, returns)[:, None] # (B, 1)
# cql_importance_sample
q_pi_1 = q_pi_1 - log_pi
q_pi_2 = q_pi_2 - log_pi
q_pi_next_1 = q_pi_next_1 - log_pi_next
q_pi_next_2 = q_pi_next_2 - log_pi_next
cat_q_1 = torch.cat([q_rand_1, q_pi_1, q_pi_next_1], dim=-1) # (B, num_samples+1)
cql_qf1_ood = torch.logsumexp(cat_q_1, dim=-1) # max over num_samples
cat_q_2 = torch.cat([q_rand_2, q_pi_2, q_pi_next_2], dim=-1) # (B, num_samples+1)
cql_qf2_ood = torch.logsumexp(cat_q_2, dim=-1) # sum over num_samples
# skip cal_lagrange since the paper shows cql_target_action_gap not used in kitchen
# Subtract the log likelihood of the data
cql_qf1_diff = torch.clamp(
cql_qf1_ood - q_data1,
min=self.cql_clip_diff_min,
max=self.cql_clip_diff_max,
).mean()
cql_qf2_diff = torch.clamp(
cql_qf2_ood - q_data2,
min=self.cql_clip_diff_min,
max=self.cql_clip_diff_max,
).mean()
cql_min_qf1_loss = cql_qf1_diff * self.cql_min_q_weight
cql_min_qf2_loss = cql_qf2_diff * self.cql_min_q_weight
# Sum the two losses
critic_loss = td_loss_1 + td_loss_2 + cql_min_qf1_loss + cql_min_qf2_loss
return critic_loss
def loss_actor(self, obs, alpha):
action, logprob = self.forward(
obs,
deterministic=False,
reparameterize=True,
get_logprob=True,
)
q1, q2 = self.critic(obs, action)
actor_loss = -torch.min(q1, q2) + alpha * logprob
return actor_loss.mean()
def loss_temperature(self, obs, alpha, target_entropy):
with torch.no_grad():
_, logprob = self.forward(
obs,
deterministic=False,
get_logprob=True,
)
loss_alpha = -torch.mean(alpha * (logprob + target_entropy))
return loss_alpha
def update_target_critic(self, tau):
for target_param, param in zip(
self.target_critic.parameters(), self.critic.parameters()
):
target_param.data.copy_(tau * param.data + (1 - tau) * target_param.data)