98 lines
3.0 KiB
Python
98 lines
3.0 KiB
Python
"""
|
|
GMM policy parameterization.
|
|
|
|
"""
|
|
|
|
import torch
|
|
import torch.distributions as D
|
|
import logging
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
class GMMModel(torch.nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
network,
|
|
horizon_steps,
|
|
network_path=None,
|
|
device="cuda:0",
|
|
**kwargs,
|
|
):
|
|
super().__init__()
|
|
self.device = device
|
|
self.network = network.to(device)
|
|
if network_path is not None:
|
|
checkpoint = torch.load(
|
|
network_path, map_location=self.device, weights_only=True
|
|
)
|
|
self.load_state_dict(
|
|
checkpoint["model"],
|
|
strict=False,
|
|
)
|
|
logging.info("Loaded actor from %s", network_path)
|
|
log.info(
|
|
f"Number of network parameters: {sum(p.numel() for p in self.parameters())}"
|
|
)
|
|
self.horizon_steps = horizon_steps
|
|
|
|
def loss(
|
|
self,
|
|
true_action,
|
|
cond,
|
|
**kwargs,
|
|
):
|
|
B = len(true_action)
|
|
dist, entropy, _ = self.forward_train(
|
|
cond,
|
|
deterministic=False,
|
|
)
|
|
true_action = true_action.view(B, -1)
|
|
loss = -dist.log_prob(true_action) # [B]
|
|
loss = loss.mean()
|
|
return loss, {"entropy": entropy}
|
|
|
|
def forward_train(
|
|
self,
|
|
cond,
|
|
deterministic=False,
|
|
):
|
|
"""
|
|
Calls the MLP to compute the mean, scale, and logits of the GMM. Returns the torch.Distribution object.
|
|
"""
|
|
means, scales, logits = self.network(cond)
|
|
if deterministic:
|
|
# low-noise for all Gaussian dists
|
|
scales = torch.ones_like(means) * 1e-4
|
|
|
|
# mixture components - make sure that `batch_shape` for the distribution is equal to (batch_size, num_modes) since MixtureSameFamily expects this shape
|
|
# Each mode has mean vector of dim T*D
|
|
component_distribution = D.Normal(loc=means, scale=scales)
|
|
component_distribution = D.Independent(component_distribution, 1)
|
|
|
|
component_entropy = component_distribution.entropy()
|
|
approx_entropy = torch.mean(
|
|
torch.sum(logits.softmax(-1) * component_entropy, dim=-1)
|
|
)
|
|
std = torch.mean(torch.sum(logits.softmax(-1) * scales.mean(-1), dim=-1))
|
|
|
|
# unnormalized logits to categorical distribution for mixing the modes
|
|
mixture_distribution = D.Categorical(logits=logits)
|
|
dist = D.MixtureSameFamily(
|
|
mixture_distribution=mixture_distribution,
|
|
component_distribution=component_distribution,
|
|
)
|
|
return dist, approx_entropy, std
|
|
|
|
def forward(self, cond, deterministic=False):
|
|
B = len(cond["state"]) if "state" in cond else len(cond["rgb"])
|
|
T = self.horizon_steps
|
|
dist, _, _ = self.forward_train(
|
|
cond,
|
|
deterministic=deterministic,
|
|
)
|
|
sampled_action = dist.sample()
|
|
sampled_action = sampled_action.view(B, T, -1)
|
|
return sampled_action
|