dppo/model/common/gmm.py
2024-09-11 21:09:17 -04:00

98 lines
3.0 KiB
Python

"""
GMM policy parameterization.
"""
import torch
import torch.distributions as D
import logging
log = logging.getLogger(__name__)
class GMMModel(torch.nn.Module):
def __init__(
self,
network,
horizon_steps,
network_path=None,
device="cuda:0",
**kwargs,
):
super().__init__()
self.device = device
self.network = network.to(device)
if network_path is not None:
checkpoint = torch.load(
network_path, map_location=self.device, weights_only=True
)
self.load_state_dict(
checkpoint["model"],
strict=False,
)
logging.info("Loaded actor from %s", network_path)
log.info(
f"Number of network parameters: {sum(p.numel() for p in self.parameters())}"
)
self.horizon_steps = horizon_steps
def loss(
self,
true_action,
cond,
**kwargs,
):
B = len(true_action)
dist, entropy, _ = self.forward_train(
cond,
deterministic=False,
)
true_action = true_action.view(B, -1)
loss = -dist.log_prob(true_action) # [B]
loss = loss.mean()
return loss, {"entropy": entropy}
def forward_train(
self,
cond,
deterministic=False,
):
"""
Calls the MLP to compute the mean, scale, and logits of the GMM. Returns the torch.Distribution object.
"""
means, scales, logits = self.network(cond)
if deterministic:
# low-noise for all Gaussian dists
scales = torch.ones_like(means) * 1e-4
# mixture components - make sure that `batch_shape` for the distribution is equal to (batch_size, num_modes) since MixtureSameFamily expects this shape
# Each mode has mean vector of dim T*D
component_distribution = D.Normal(loc=means, scale=scales)
component_distribution = D.Independent(component_distribution, 1)
component_entropy = component_distribution.entropy()
approx_entropy = torch.mean(
torch.sum(logits.softmax(-1) * component_entropy, dim=-1)
)
std = torch.mean(torch.sum(logits.softmax(-1) * scales.mean(-1), dim=-1))
# unnormalized logits to categorical distribution for mixing the modes
mixture_distribution = D.Categorical(logits=logits)
dist = D.MixtureSameFamily(
mixture_distribution=mixture_distribution,
component_distribution=component_distribution,
)
return dist, approx_entropy, std
def forward(self, cond, deterministic=False):
B = len(cond["state"]) if "state" in cond else len(cond["rgb"])
T = self.horizon_steps
dist, _, _ = self.forward_train(
cond,
deterministic=deterministic,
)
sampled_action = dist.sample()
sampled_action = sampled_action.view(B, T, -1)
return sampled_action