dppo/model/common/modules.py
2024-09-03 21:03:27 -04:00

70 lines
2.1 KiB
Python

"""
Additional implementation of the ViT image encoder from https://github.com/hengyuan-hu/ibrl/tree/main
"""
import torch
import torch.nn as nn
class SpatialEmb(nn.Module):
def __init__(self, num_patch, patch_dim, prop_dim, proj_dim, dropout):
super().__init__()
proj_in_dim = num_patch + prop_dim
num_proj = patch_dim
self.patch_dim = patch_dim
self.prop_dim = prop_dim
self.input_proj = nn.Sequential(
nn.Linear(proj_in_dim, proj_dim),
nn.LayerNorm(proj_dim),
nn.ReLU(inplace=True),
)
self.weight = nn.Parameter(torch.zeros(1, num_proj, proj_dim))
self.dropout = nn.Dropout(dropout)
nn.init.normal_(self.weight)
def extra_repr(self) -> str:
return f"weight: nn.Parameter ({self.weight.size()})"
def forward(self, feat: torch.Tensor, prop: torch.Tensor):
feat = feat.transpose(1, 2)
if self.prop_dim > 0:
repeated_prop = prop.unsqueeze(1).repeat(1, feat.size(1), 1)
feat = torch.cat((feat, repeated_prop), dim=-1)
y = self.input_proj(feat)
z = (self.weight * y).sum(1)
z = self.dropout(z)
return z
class RandomShiftsAug:
def __init__(self, pad):
self.pad = pad
def __call__(self, x):
n, c, h, w = x.size()
assert h == w
padding = tuple([self.pad] * 4)
x = nn.functional.pad(x, padding, "replicate")
eps = 1.0 / (h + 2 * self.pad)
arange = torch.linspace(
-1.0 + eps, 1.0 - eps, h + 2 * self.pad, device=x.device, dtype=x.dtype
)[:h]
arange = arange.unsqueeze(0).repeat(h, 1).unsqueeze(2)
base_grid = torch.cat([arange, arange.transpose(1, 0)], dim=2)
base_grid = base_grid.unsqueeze(0).repeat(n, 1, 1, 1)
shift = torch.randint(
0, 2 * self.pad + 1, size=(n, 1, 1, 2), device=x.device, dtype=x.dtype
)
shift *= 2.0 / (h + 2 * self.pad)
grid = base_grid + shift
return nn.functional.grid_sample(
x, grid, padding_mode="zeros", align_corners=False
)