dppo/cfg/gym/finetune/walker2d-v2/ft_rlpd_mlp.yaml
Allen Z. Ren e0842e71dc
v0.5 to main (#10)
* v0.5 (#9)

* update idql configs

* update awr configs

* update dipo configs

* update qsm configs

* update dqm configs

* update project version to 0.5.0
2024-10-07 16:35:13 -04:00

103 lines
2.7 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_rlpd_agent.TrainRLPDAgent
name: ${env_name}_rlpd_mlp_ta${horizon_steps}_td${denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz
offline_dataset_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/train.npz
seed: 42
device: cuda:0
env_name: walker2d-medium-v2
obs_dim: 17
action_dim: 6
denoising_steps: 20
cond_steps: 1
horizon_steps: 1
act_steps: 1
env:
n_envs: 40
name: ${env_name}
max_episode_steps: 1000
reset_at_iteration: False
save_video: False
best_reward_threshold_for_success: 3
wrappers:
mujoco_locomotion_lowdim:
normalization_path: ${normalization_path}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: rlpd-gym-${env_name}-finetune
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 1000
n_critic_warmup_itr: 5
n_steps: 2000
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# RLPD specific
batch_size: 512
entropy_temperature: 1.0 # alpha in RLPD paper
target_ema_rate: 0.005 # rho in RLPD paper
scale_reward_factor: 1.0 # multiply reward by this amount for more stable value estimation
replay_ratio: 64 # number of batches to sample for each learning update
buffer_size: 1000000
model:
_target_: model.rl.gaussian_rlpd.RLPD_Gaussian
randn_clip_value: 3
actor:
_target_: model.common.mlp_gaussian.Gaussian_MLP
mlp_dims: [512, 512, 512]
activation_type: ReLU
residual_style: True
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
horizon_steps: ${horizon_steps}
action_dim: ${action_dim}
critic:
_target_: model.common.critic.CriticObsAct
action_dim: ${action_dim}
action_steps: ${act_steps}
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
use_layernorm: True
horizon_steps: ${horizon_steps}
device: ${device}
n_critics: 2 # Ensemble size for critic models
offline_dataset:
_target_: agent.dataset.sequence.StitchedSequenceQLearningDataset
dataset_path: ${offline_dataset_path}
horizon_steps: ${horizon_steps}
cond_steps: ${cond_steps}
device: ${device}