dppo/model/rl/gaussian_vpg.py

70 lines
1.6 KiB
Python

"""
Policy gradient for Gaussian policy
"""
import torch
from copy import deepcopy
import logging
from model.common.gaussian import GaussianModel
class VPG_Gaussian(GaussianModel):
def __init__(
self,
actor,
critic,
**kwargs,
):
super().__init__(network=actor, **kwargs)
# Value function for obs - simple MLP
self.critic = critic.to(self.device)
# Re-name network to actor
self.actor_ft = actor
# Save a copy of original actor
self.actor = deepcopy(actor)
for param in self.actor.parameters():
param.requires_grad = False
# ---------- Sampling ----------#
@torch.no_grad()
def forward(
self,
cond,
deterministic=False,
use_base_policy=False,
):
return super().forward(
cond=cond,
deterministic=deterministic,
network_override=self.actor if use_base_policy else None,
)
# ---------- RL training ----------#
def get_logprobs(
self,
cond,
actions,
use_base_policy=False,
):
B = len(actions)
dist = self.forward_train(
cond,
deterministic=False,
network_override=self.actor if use_base_policy else None,
)
log_prob = dist.log_prob(actions.view(B, -1))
log_prob = log_prob.mean(-1)
entropy = dist.entropy().mean()
std = dist.scale.mean()
return log_prob, entropy, std
def loss(self, obs, actions, reward):
raise NotImplementedError