127 lines
3.7 KiB
Python
127 lines
3.7 KiB
Python
import logging
|
|
|
|
import os
|
|
import torch
|
|
import pickle
|
|
import numpy as np
|
|
|
|
from agent.dataset.d3il_dataset.base_dataset import TrajectoryDataset
|
|
|
|
|
|
class Avoiding_Dataset(TrajectoryDataset):
|
|
def __init__(
|
|
self,
|
|
data_directory: os.PathLike,
|
|
device="cpu",
|
|
obs_dim: int = 20,
|
|
action_dim: int = 2,
|
|
max_len_data: int = 256,
|
|
window_size: int = 1,
|
|
):
|
|
|
|
super().__init__(
|
|
data_directory=data_directory,
|
|
device=device,
|
|
obs_dim=obs_dim,
|
|
action_dim=action_dim,
|
|
max_len_data=max_len_data,
|
|
window_size=window_size,
|
|
)
|
|
|
|
logging.info("Loading Sorting Dataset")
|
|
|
|
inputs = []
|
|
actions = []
|
|
masks = []
|
|
|
|
data_dir = data_directory
|
|
state_files = os.listdir(data_dir)
|
|
|
|
for file in state_files:
|
|
with open(os.path.join(data_dir, file), "rb") as f:
|
|
env_state = pickle.load(f)
|
|
|
|
zero_obs = np.zeros((1, self.max_len_data, self.obs_dim), dtype=np.float32)
|
|
zero_action = np.zeros(
|
|
(1, self.max_len_data, self.action_dim), dtype=np.float32
|
|
)
|
|
zero_mask = np.zeros((1, self.max_len_data), dtype=np.float32)
|
|
|
|
# robot and box posistion
|
|
robot_des_pos = env_state["robot"]["des_c_pos"][:, :2]
|
|
robot_c_pos = env_state["robot"]["c_pos"][:, :2]
|
|
|
|
input_state = np.concatenate((robot_des_pos, robot_c_pos), axis=-1)
|
|
|
|
vel_state = robot_des_pos[1:] - robot_des_pos[:-1]
|
|
valid_len = len(vel_state)
|
|
|
|
zero_obs[0, :valid_len, :] = input_state[:-1]
|
|
zero_action[0, :valid_len, :] = vel_state
|
|
zero_mask[0, :valid_len] = 1
|
|
|
|
inputs.append(zero_obs)
|
|
actions.append(zero_action)
|
|
masks.append(zero_mask)
|
|
|
|
# shape: B, T, n
|
|
self.observations = torch.from_numpy(np.concatenate(inputs)).to(device).float()
|
|
self.actions = torch.from_numpy(np.concatenate(actions)).to(device).float()
|
|
self.masks = torch.from_numpy(np.concatenate(masks)).to(device).float()
|
|
|
|
self.num_data = len(self.observations)
|
|
|
|
self.slices = self.get_slices()
|
|
|
|
def get_slices(self):
|
|
slices = []
|
|
|
|
min_seq_length = np.inf
|
|
for i in range(self.num_data):
|
|
T = self.get_seq_length(i)
|
|
min_seq_length = min(T, min_seq_length)
|
|
|
|
if T - self.window_size < 0:
|
|
print(
|
|
f"Ignored short sequence #{i}: len={T}, window={self.window_size}"
|
|
)
|
|
else:
|
|
slices += [
|
|
(i, start, start + self.window_size)
|
|
for start in range(T - self.window_size + 1)
|
|
] # slice indices follow convention [start, end)
|
|
|
|
return slices
|
|
|
|
def get_seq_length(self, idx):
|
|
return int(self.masks[idx].sum().item())
|
|
|
|
def get_all_actions(self):
|
|
result = []
|
|
# mask out invalid actions
|
|
for i in range(len(self.masks)):
|
|
T = int(self.masks[i].sum().item())
|
|
result.append(self.actions[i, :T, :])
|
|
return torch.cat(result, dim=0)
|
|
|
|
def get_all_observations(self):
|
|
result = []
|
|
# mask out invalid observations
|
|
for i in range(len(self.masks)):
|
|
T = int(self.masks[i].sum().item())
|
|
result.append(self.observations[i, :T, :])
|
|
return torch.cat(result, dim=0)
|
|
|
|
def __len__(self):
|
|
return len(self.slices)
|
|
|
|
def __getitem__(self, idx):
|
|
|
|
i, start, end = self.slices[idx]
|
|
|
|
obs = self.observations[i, start:end]
|
|
act = self.actions[i, start:end]
|
|
mask = self.masks[i, start:end]
|
|
|
|
return obs, act, mask
|