dppo/agent/dataset/d3il_dataset/pushing_dataset.py
2024-09-03 21:03:27 -04:00

162 lines
5.0 KiB
Python

import logging
import os
import torch
import pickle
import numpy as np
from agent.dataset.d3il_dataset.base_dataset import TrajectoryDataset
from agent.dataset.d3il_dataset import sim_framework_path
from .geo_transform import quat2euler
class Pushing_Dataset(TrajectoryDataset):
def __init__(
self,
data_directory: os.PathLike,
device="cpu",
obs_dim: int = 20,
action_dim: int = 2,
max_len_data: int = 256,
window_size: int = 1,
):
super().__init__(
data_directory=data_directory,
device=device,
obs_dim=obs_dim,
action_dim=action_dim,
max_len_data=max_len_data,
window_size=window_size,
)
logging.info("Loading Block Push Dataset")
inputs = []
actions = []
masks = []
# for root, dirs, files in os.walk(self.data_directory):
#
# for mode_dir in dirs:
# state_files = glob.glob(os.path.join(root, mode_dir) + "/env*")
# data_dir = os.path.join(sim_framework_path(data_directory), "local")
# data_dir = sim_framework_path(data_directory)
# state_files = glob.glob(data_dir + "/env*")
bp_data_dir = sim_framework_path("data/pushing/all_data")
state_files = np.load(sim_framework_path(data_directory), allow_pickle=True)
for file in state_files:
with open(os.path.join(bp_data_dir, file), "rb") as f:
env_state = pickle.load(f)
# lengths.append(len(env_state['robot']['des_c_pos']))
zero_obs = np.zeros((1, self.max_len_data, self.obs_dim), dtype=np.float32)
zero_action = np.zeros(
(1, self.max_len_data, self.action_dim), dtype=np.float32
)
zero_mask = np.zeros((1, self.max_len_data), dtype=np.float32)
# robot and box positions
robot_des_pos = env_state["robot"]["des_c_pos"][:, :2]
robot_c_pos = env_state["robot"]["c_pos"][:, :2]
red_box_pos = env_state["red-box"]["pos"][:, :2]
red_box_quat = np.tan(quat2euler(env_state["red-box"]["quat"])[:, -1:])
green_box_pos = env_state["green-box"]["pos"][:, :2]
green_box_quat = np.tan(quat2euler(env_state["green-box"]["quat"])[:, -1:])
red_target_pos = env_state["red-target"]["pos"][:, :2]
green_target_pos = env_state["green-target"]["pos"][:, :2]
input_state = np.concatenate(
(
robot_des_pos,
robot_c_pos,
red_box_pos,
red_box_quat,
green_box_pos,
green_box_quat,
),
axis=-1,
)
vel_state = robot_des_pos[1:] - robot_des_pos[:-1]
valid_len = len(input_state) - 1
zero_obs[0, :valid_len, :] = input_state[:-1]
zero_action[0, :valid_len, :] = vel_state
zero_mask[0, :valid_len] = 1
inputs.append(zero_obs)
actions.append(zero_action)
masks.append(zero_mask)
# shape: B, T, n
self.observations = torch.from_numpy(np.concatenate(inputs)).to(device).float()
self.actions = torch.from_numpy(np.concatenate(actions)).to(device).float()
self.masks = torch.from_numpy(np.concatenate(masks)).to(device).float()
self.num_data = len(self.observations)
self.slices = self.get_slices()
def get_slices(self):
slices = []
min_seq_length = np.inf
for i in range(self.num_data):
T = self.get_seq_length(i)
min_seq_length = min(T, min_seq_length)
if T - self.window_size < 0:
print(
f"Ignored short sequence #{i}: len={T}, window={self.window_size}"
)
else:
slices += [
(i, start, start + self.window_size)
for start in range(T - self.window_size + 1)
] # slice indices follow convention [start, end)
return slices
def get_seq_length(self, idx):
return int(self.masks[idx].sum().item())
def get_all_actions(self):
result = []
# mask out invalid actions
for i in range(len(self.masks)):
T = int(self.masks[i].sum().item())
result.append(self.actions[i, :T, :])
return torch.cat(result, dim=0)
def get_all_observations(self):
result = []
# mask out invalid observations
for i in range(len(self.masks)):
T = int(self.masks[i].sum().item())
result.append(self.observations[i, :T, :])
return torch.cat(result, dim=0)
def __len__(self):
return len(self.slices)
def __getitem__(self, idx):
i, start, end = self.slices[idx]
obs = self.observations[i, start:end]
act = self.actions[i, start:end]
mask = self.masks[i, start:end]
return obs, act, mask