469 lines
21 KiB
Python
469 lines
21 KiB
Python
"""
|
|
DPPO fine-tuning for pixel observations.
|
|
|
|
"""
|
|
|
|
import os
|
|
import pickle
|
|
import einops
|
|
import numpy as np
|
|
import torch
|
|
import logging
|
|
import wandb
|
|
import math
|
|
|
|
log = logging.getLogger(__name__)
|
|
from util.timer import Timer
|
|
from agent.finetune.train_ppo_diffusion_agent import TrainPPODiffusionAgent
|
|
from model.common.modules import RandomShiftsAug
|
|
|
|
|
|
class TrainPPOImgDiffusionAgent(TrainPPODiffusionAgent):
|
|
|
|
def __init__(self, cfg):
|
|
super().__init__(cfg)
|
|
|
|
# Image randomization
|
|
self.augment = cfg.train.augment
|
|
if self.augment:
|
|
self.aug = RandomShiftsAug(pad=4)
|
|
|
|
# Set obs dim - we will save the different obs in batch in a dict
|
|
shape_meta = cfg.shape_meta
|
|
self.obs_dims = {k: shape_meta.obs[k]["shape"] for k in shape_meta.obs.keys()}
|
|
|
|
# Gradient accumulation to deal with large GPU RAM usage
|
|
self.grad_accumulate = cfg.train.grad_accumulate
|
|
|
|
def run(self):
|
|
|
|
# Start training loop
|
|
timer = Timer()
|
|
run_results = []
|
|
last_itr_eval = False
|
|
done_venv = np.zeros((1, self.n_envs))
|
|
while self.itr < self.n_train_itr:
|
|
|
|
# Prepare video paths for each envs --- only applies for the first set of episodes if allowing reset within iteration and each iteration has multiple episodes from one env
|
|
options_venv = [{} for _ in range(self.n_envs)]
|
|
if self.itr % self.render_freq == 0 and self.render_video:
|
|
for env_ind in range(self.n_render):
|
|
options_venv[env_ind]["video_path"] = os.path.join(
|
|
self.render_dir, f"itr-{self.itr}_trial-{env_ind}.mp4"
|
|
)
|
|
|
|
# Define train or eval - all envs restart
|
|
eval_mode = self.itr % self.val_freq == 0 and not self.force_train
|
|
self.model.eval() if eval_mode else self.model.train()
|
|
last_itr_eval = eval_mode
|
|
|
|
# Reset env before iteration starts (1) if specified, (2) at eval mode, or (3) right after eval mode
|
|
dones_trajs = np.empty((0, self.n_envs))
|
|
firsts_trajs = np.zeros((self.n_steps + 1, self.n_envs))
|
|
if self.reset_at_iteration or eval_mode or last_itr_eval:
|
|
prev_obs_venv = self.reset_env_all(options_venv=options_venv)
|
|
firsts_trajs[0] = 1
|
|
else:
|
|
firsts_trajs[0] = (
|
|
done_venv # if done at the end of last iteration, then the envs are just reset
|
|
)
|
|
|
|
# Holder
|
|
obs_trajs = {
|
|
k: np.empty((0, self.n_envs, self.n_cond_step, *self.obs_dims[k]))
|
|
for k in self.obs_dims
|
|
}
|
|
chains_trajs = np.empty(
|
|
(
|
|
0,
|
|
self.n_envs,
|
|
self.model.ft_denoising_steps + 1,
|
|
self.horizon_steps,
|
|
self.action_dim,
|
|
)
|
|
)
|
|
reward_trajs = np.empty((0, self.n_envs))
|
|
|
|
# Collect a set of trajectories from env
|
|
for step in range(self.n_steps):
|
|
if step % 10 == 0:
|
|
print(f"Processed step {step} of {self.n_steps}")
|
|
|
|
# Select action
|
|
with torch.no_grad():
|
|
cond = {
|
|
key: torch.from_numpy(prev_obs_venv[key])
|
|
.float()
|
|
.to(self.device)
|
|
for key in self.obs_dims.keys()
|
|
} # batch each type of obs and put into dict
|
|
samples = self.model(
|
|
cond=cond,
|
|
deterministic=eval_mode,
|
|
return_chain=True,
|
|
)
|
|
output_venv = (
|
|
samples.trajectories.cpu().numpy()
|
|
) # n_env x horizon x act
|
|
chains_venv = (
|
|
samples.chains.cpu().numpy()
|
|
) # n_env x denoising x horizon x act
|
|
action_venv = output_venv[:, : self.act_steps]
|
|
|
|
# Apply multi-step action
|
|
obs_venv, reward_venv, done_venv, info_venv = self.venv.step(
|
|
action_venv
|
|
)
|
|
for k in obs_trajs.keys():
|
|
obs_trajs[k] = np.vstack((obs_trajs[k], prev_obs_venv[k][None]))
|
|
chains_trajs = np.vstack((chains_trajs, chains_venv[None]))
|
|
reward_trajs = np.vstack((reward_trajs, reward_venv[None]))
|
|
dones_trajs = np.vstack((dones_trajs, done_venv[None]))
|
|
firsts_trajs[step + 1] = done_venv
|
|
prev_obs_venv = obs_venv
|
|
|
|
# Summarize episode reward --- this needs to be handled differently depending on whether the environment is reset after each iteration. Only count episodes that finish within the iteration.
|
|
episodes_start_end = []
|
|
for env_ind in range(self.n_envs):
|
|
env_steps = np.where(firsts_trajs[:, env_ind] == 1)[0]
|
|
for i in range(len(env_steps) - 1):
|
|
start = env_steps[i]
|
|
end = env_steps[i + 1]
|
|
if end - start > 1:
|
|
episodes_start_end.append((env_ind, start, end - 1))
|
|
if len(episodes_start_end) > 0:
|
|
reward_trajs_split = [
|
|
reward_trajs[start : end + 1, env_ind]
|
|
for env_ind, start, end in episodes_start_end
|
|
]
|
|
num_episode_finished = len(reward_trajs_split)
|
|
episode_reward = np.array(
|
|
[np.sum(reward_traj) for reward_traj in reward_trajs_split]
|
|
)
|
|
episode_best_reward = np.array(
|
|
[
|
|
np.max(reward_traj) / self.act_steps
|
|
for reward_traj in reward_trajs_split
|
|
]
|
|
)
|
|
avg_episode_reward = np.mean(episode_reward)
|
|
avg_best_reward = np.mean(episode_best_reward)
|
|
success_rate = np.mean(
|
|
episode_best_reward >= self.best_reward_threshold_for_success
|
|
)
|
|
else:
|
|
episode_reward = np.array([])
|
|
num_episode_finished = 0
|
|
avg_episode_reward = 0
|
|
avg_best_reward = 0
|
|
success_rate = 0
|
|
log.info("[WARNING] No episode completed within the iteration!")
|
|
|
|
# Update
|
|
if not eval_mode:
|
|
with torch.no_grad():
|
|
# apply image randomization
|
|
obs_trajs["rgb"] = (
|
|
torch.from_numpy(obs_trajs["rgb"]).float().to(self.device)
|
|
)
|
|
obs_trajs["state"] = (
|
|
torch.from_numpy(obs_trajs["state"]).float().to(self.device)
|
|
)
|
|
if self.augment:
|
|
rgb = einops.rearrange(
|
|
obs_trajs["rgb"],
|
|
"s e t c h w -> (s e t) c h w",
|
|
)
|
|
rgb = self.aug(rgb)
|
|
obs_trajs["rgb"] = einops.rearrange(
|
|
rgb,
|
|
"(s e t) c h w -> s e t c h w",
|
|
s=self.n_steps,
|
|
e=self.n_envs,
|
|
)
|
|
|
|
# Calculate value and logprobs - split into batches to prevent out of memory
|
|
num_split = math.ceil(
|
|
self.n_envs * self.n_steps / self.logprob_batch_size
|
|
)
|
|
obs_ts = [{} for _ in range(num_split)]
|
|
for k in obs_trajs.keys():
|
|
obs_k = einops.rearrange(
|
|
obs_trajs[k],
|
|
"s e ... -> (s e) ...",
|
|
)
|
|
obs_ts_k = torch.split(obs_k, self.logprob_batch_size, dim=0)
|
|
for i, obs_t in enumerate(obs_ts_k):
|
|
obs_ts[i][k] = obs_t
|
|
values_trajs = np.empty((0, self.n_envs))
|
|
for obs in obs_ts:
|
|
values = (
|
|
self.model.critic(obs, no_augment=True)
|
|
.cpu()
|
|
.numpy()
|
|
.flatten()
|
|
)
|
|
values_trajs = np.vstack(
|
|
(values_trajs, values.reshape(-1, self.n_envs))
|
|
)
|
|
chains_t = einops.rearrange(
|
|
torch.from_numpy(chains_trajs).float().to(self.device),
|
|
"s e t h d -> (s e) t h d",
|
|
)
|
|
chains_ts = torch.split(chains_t, self.logprob_batch_size, dim=0)
|
|
logprobs_trajs = np.empty(
|
|
(
|
|
0,
|
|
self.model.ft_denoising_steps,
|
|
self.horizon_steps,
|
|
self.action_dim,
|
|
)
|
|
)
|
|
for obs, chains in zip(obs_ts, chains_ts):
|
|
logprobs = self.model.get_logprobs(obs, chains).cpu().numpy()
|
|
logprobs_trajs = np.vstack(
|
|
(
|
|
logprobs_trajs,
|
|
logprobs.reshape(-1, *logprobs_trajs.shape[1:]),
|
|
)
|
|
)
|
|
|
|
# normalize reward with running variance if specified
|
|
if self.reward_scale_running:
|
|
reward_trajs_transpose = self.running_reward_scaler(
|
|
reward=reward_trajs.T, first=firsts_trajs[:-1].T
|
|
)
|
|
reward_trajs = reward_trajs_transpose.T
|
|
|
|
# bootstrap value with GAE if not done - apply reward scaling with constant if specified
|
|
obs_venv_ts = {
|
|
key: torch.from_numpy(obs_venv[key]).float().to(self.device)
|
|
for key in self.obs_dims.keys()
|
|
}
|
|
with torch.no_grad():
|
|
next_value = (
|
|
self.model.critic(obs_venv_ts, no_augment=True)
|
|
.reshape(1, -1)
|
|
.cpu()
|
|
.numpy()
|
|
)
|
|
advantages_trajs = np.zeros_like(reward_trajs)
|
|
lastgaelam = 0
|
|
for t in reversed(range(self.n_steps)):
|
|
if t == self.n_steps - 1:
|
|
nextnonterminal = 1.0 - done_venv
|
|
nextvalues = next_value
|
|
else:
|
|
nextnonterminal = 1.0 - dones_trajs[t + 1]
|
|
nextvalues = values_trajs[t + 1]
|
|
# delta = r + gamma*V(st+1) - V(st)
|
|
delta = (
|
|
reward_trajs[t] * self.reward_scale_const
|
|
+ self.gamma * nextvalues * nextnonterminal
|
|
- values_trajs[t]
|
|
)
|
|
# A = delta_t + gamma*lamdba*delta_{t+1} + ...
|
|
advantages_trajs[t] = lastgaelam = (
|
|
delta
|
|
+ self.gamma
|
|
* self.gae_lambda
|
|
* nextnonterminal
|
|
* lastgaelam
|
|
)
|
|
returns_trajs = advantages_trajs + values_trajs
|
|
|
|
# k for environment step
|
|
obs_k = {
|
|
k: einops.rearrange(
|
|
obs_trajs[k],
|
|
"s e ... -> (s e) ...",
|
|
)
|
|
for k in obs_trajs.keys()
|
|
}
|
|
chains_k = einops.rearrange(
|
|
torch.tensor(chains_trajs).float().to(self.device),
|
|
"s e t h d -> (s e) t h d",
|
|
)
|
|
returns_k = (
|
|
torch.tensor(returns_trajs).float().to(self.device).reshape(-1)
|
|
)
|
|
values_k = (
|
|
torch.tensor(values_trajs).float().to(self.device).reshape(-1)
|
|
)
|
|
advantages_k = (
|
|
torch.tensor(advantages_trajs).float().to(self.device).reshape(-1)
|
|
)
|
|
logprobs_k = torch.tensor(logprobs_trajs).float().to(self.device)
|
|
|
|
# Update policy and critic
|
|
total_steps = self.n_steps * self.n_envs
|
|
inds_k = np.arange(total_steps)
|
|
clipfracs = []
|
|
for update_epoch in range(self.update_epochs):
|
|
|
|
# for each epoch, go through all data in batches
|
|
flag_break = False
|
|
np.random.shuffle(inds_k)
|
|
num_batch = max(1, total_steps // self.batch_size) # skip last ones
|
|
for batch in range(num_batch):
|
|
start = batch * self.batch_size
|
|
end = start + self.batch_size
|
|
inds_b = inds_k[start:end] # b for batch
|
|
obs_b = {k: obs_k[k][inds_b] for k in obs_k.keys()}
|
|
chains_b = chains_k[inds_b]
|
|
returns_b = returns_k[inds_b]
|
|
values_b = values_k[inds_b]
|
|
advantages_b = advantages_k[inds_b]
|
|
logprobs_b = logprobs_k[inds_b]
|
|
|
|
# get loss
|
|
(
|
|
pg_loss,
|
|
entropy_loss,
|
|
v_loss,
|
|
clipfrac,
|
|
approx_kl,
|
|
ratio,
|
|
bc_loss,
|
|
eta,
|
|
) = self.model.loss(
|
|
obs_b,
|
|
chains_b,
|
|
returns_b,
|
|
values_b,
|
|
advantages_b,
|
|
logprobs_b,
|
|
use_bc_loss=self.use_bc_loss,
|
|
reward_horizon=self.reward_horizon,
|
|
)
|
|
loss = (
|
|
pg_loss
|
|
+ entropy_loss * self.ent_coef
|
|
+ v_loss * self.vf_coef
|
|
+ bc_loss * self.bc_loss_coeff
|
|
)
|
|
clipfracs += [clipfrac]
|
|
|
|
# update policy and critic
|
|
loss.backward()
|
|
if (batch + 1) % self.grad_accumulate == 0:
|
|
if self.itr >= self.n_critic_warmup_itr:
|
|
if self.max_grad_norm is not None:
|
|
torch.nn.utils.clip_grad_norm_(
|
|
self.model.actor_ft.parameters(),
|
|
self.max_grad_norm,
|
|
)
|
|
self.actor_optimizer.step()
|
|
if (
|
|
self.learn_eta
|
|
and batch % self.eta_update_interval == 0
|
|
):
|
|
self.eta_optimizer.step()
|
|
self.critic_optimizer.step()
|
|
self.actor_optimizer.zero_grad()
|
|
self.critic_optimizer.zero_grad()
|
|
if self.learn_eta:
|
|
self.eta_optimizer.zero_grad()
|
|
log.info(f"run grad update at batch {batch}")
|
|
log.info(
|
|
f"approx_kl: {approx_kl}, update_epoch: {update_epoch}, num_batch: {num_batch}"
|
|
)
|
|
|
|
# Stop gradient update if KL difference reaches target
|
|
if (
|
|
self.target_kl is not None
|
|
and approx_kl > self.target_kl
|
|
and self.itr >= self.n_critic_warmup_itr
|
|
):
|
|
flag_break = True
|
|
break
|
|
if flag_break:
|
|
break
|
|
|
|
# Explained variation of future rewards using value function
|
|
y_pred, y_true = values_k.cpu().numpy(), returns_k.cpu().numpy()
|
|
var_y = np.var(y_true)
|
|
explained_var = (
|
|
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
|
|
)
|
|
|
|
# Update lr
|
|
if self.itr >= self.n_critic_warmup_itr:
|
|
self.actor_lr_scheduler.step()
|
|
if self.learn_eta:
|
|
self.eta_lr_scheduler.step()
|
|
self.critic_lr_scheduler.step()
|
|
self.model.step()
|
|
diffusion_min_sampling_std = self.model.get_min_sampling_denoising_std()
|
|
|
|
# Save model
|
|
if self.itr % self.save_model_freq == 0 or self.itr == self.n_train_itr - 1:
|
|
self.save_model()
|
|
|
|
# Log loss and save metrics
|
|
run_results.append(
|
|
{
|
|
"itr": self.itr,
|
|
}
|
|
)
|
|
if self.itr % self.log_freq == 0:
|
|
if eval_mode:
|
|
log.info(
|
|
f"eval: success rate {success_rate:8.4f} | avg episode reward {avg_episode_reward:8.4f} | avg best reward {avg_best_reward:8.4f}"
|
|
)
|
|
if self.use_wandb:
|
|
wandb.log(
|
|
{
|
|
"success rate - eval": success_rate,
|
|
"avg episode reward - eval": avg_episode_reward,
|
|
"avg best reward - eval": avg_best_reward,
|
|
"num episode - eval": num_episode_finished,
|
|
},
|
|
step=self.itr,
|
|
commit=False,
|
|
)
|
|
run_results[-1]["eval_success_rate"] = success_rate
|
|
run_results[-1]["eval_episode_reward"] = avg_episode_reward
|
|
run_results[-1]["eval_best_reward"] = avg_best_reward
|
|
else:
|
|
log.info(
|
|
f"{self.itr}: loss {loss:8.4f} | pg loss {pg_loss:8.4f} | value loss {v_loss:8.4f} | bc loss {bc_loss:8.4f} | reward {avg_episode_reward:8.4f} | eta {eta:8.4f} | t:{timer():8.4f}"
|
|
)
|
|
if self.use_wandb:
|
|
wandb.log(
|
|
{
|
|
"loss": loss,
|
|
"pg loss": pg_loss,
|
|
"value loss": v_loss,
|
|
"bc loss": bc_loss,
|
|
"eta": eta,
|
|
"approx kl": approx_kl,
|
|
"ratio": ratio,
|
|
"clipfrac": np.mean(clipfracs),
|
|
"explained variance": explained_var,
|
|
"avg episode reward - train": avg_episode_reward,
|
|
"num episode - train": num_episode_finished,
|
|
"diffusion - min sampling std": diffusion_min_sampling_std,
|
|
"actor lr": self.actor_optimizer.param_groups[0]["lr"],
|
|
"critic lr": self.critic_optimizer.param_groups[0][
|
|
"lr"
|
|
],
|
|
},
|
|
step=self.itr,
|
|
commit=True,
|
|
)
|
|
run_results[-1]["loss"] = loss
|
|
run_results[-1]["pg_loss"] = pg_loss
|
|
run_results[-1]["value_loss"] = v_loss
|
|
run_results[-1]["bc_loss"] = bc_loss
|
|
run_results[-1]["eta"] = eta
|
|
run_results[-1]["approx_kl"] = approx_kl
|
|
run_results[-1]["ratio"] = ratio
|
|
run_results[-1]["clip_frac"] = np.mean(clipfracs)
|
|
run_results[-1]["explained_variance"] = explained_var
|
|
run_results[-1]["train_episode_reward"] = avg_episode_reward
|
|
run_results[-1]["time"] = timer()
|
|
with open(self.result_path, "wb") as f:
|
|
pickle.dump(run_results, f)
|
|
self.itr += 1
|