dppo/agent/finetune/train_ppo_exact_diffusion_agent.py
2024-09-03 21:03:27 -04:00

406 lines
18 KiB
Python

"""
Use diffusion exact likelihood for policy gradient.
"""
import os
import pickle
import einops
import numpy as np
import torch
import logging
import wandb
log = logging.getLogger(__name__)
from util.timer import Timer
from agent.finetune.train_ppo_diffusion_agent import TrainPPODiffusionAgent
class TrainPPOExactDiffusionAgent(TrainPPODiffusionAgent):
def __init__(self, cfg):
super().__init__(cfg)
def run(self):
"""
For exact likelihood, we do not need to save the chains.
"""
# Start training loop
timer = Timer()
run_results = []
last_itr_eval = False
done_venv = np.zeros((1, self.n_envs))
while self.itr < self.n_train_itr:
# Prepare video paths for each envs --- only applies for the first set of episodes if allowing reset within iteration and each iteration has multiple episodes from one env
options_venv = [{} for _ in range(self.n_envs)]
if self.itr % self.render_freq == 0 and self.render_video:
for env_ind in range(self.n_render):
options_venv[env_ind]["video_path"] = os.path.join(
self.render_dir, f"itr-{self.itr}_trial-{env_ind}.mp4"
)
# Define train or eval - all envs restart
eval_mode = self.itr % self.val_freq == 0 and not self.force_train
self.model.eval() if eval_mode else self.model.train()
last_itr_eval = eval_mode
# Reset env before iteration starts (1) if specified, (2) at eval mode, or (3) right after eval mode
dones_trajs = np.empty((0, self.n_envs))
firsts_trajs = np.zeros((self.n_steps + 1, self.n_envs))
if self.reset_at_iteration or eval_mode or last_itr_eval:
prev_obs_venv = self.reset_env_all(options_venv=options_venv)
firsts_trajs[0] = 1
else:
firsts_trajs[0] = (
done_venv # if done at the end of last iteration, then the envs are just reset
)
# Holder
obs_trajs = np.empty((0, self.n_envs, self.n_cond_step, self.obs_dim))
samples_trajs = np.empty(
(
0,
self.n_envs,
self.horizon_steps,
self.action_dim,
)
)
chains_trajs = np.empty(
(
0,
self.n_envs,
self.model.ft_denoising_steps + 1,
self.horizon_steps,
self.action_dim,
)
)
reward_trajs = np.empty((0, self.n_envs))
obs_full_trajs = np.empty((0, self.n_envs, self.obs_dim))
obs_full_trajs = np.vstack(
(obs_full_trajs, prev_obs_venv[None].squeeze(2))
) # remove cond_step dim
# Collect a set of trajectories from env
for step in range(self.n_steps):
if step % 10 == 0:
print(f"Processed step {step} of {self.n_steps}")
# Select action
with torch.no_grad():
samples = self.model(
cond=torch.from_numpy(prev_obs_venv).float().to(self.device),
deterministic=eval_mode,
return_chain=True,
)
output_venv = (
samples.trajectories.cpu().numpy()
) # n_env x horizon x act
chains_venv = (
samples.chains.cpu().numpy()
) # n_env x denoising x horizon x act
action_venv = output_venv[:, : self.act_steps]
# Apply multi-step action
obs_venv, reward_venv, done_venv, info_venv = self.venv.step(
action_venv
)
if self.save_full_observations:
obs_full_venv = np.vstack(
[info["full_obs"][None] for info in info_venv]
) # n_envs x n_act_steps x obs_dim
obs_full_trajs = np.vstack(
(obs_full_trajs, obs_full_venv.transpose(1, 0, 2))
)
obs_trajs = np.vstack((obs_trajs, prev_obs_venv[None]))
chains_trajs = np.vstack((chains_trajs, chains_venv[None]))
samples_trajs = np.vstack((samples_trajs, output_venv[None]))
reward_trajs = np.vstack((reward_trajs, reward_venv[None]))
dones_trajs = np.vstack((dones_trajs, done_venv[None]))
firsts_trajs[step + 1] = done_venv
prev_obs_venv = obs_venv
# Summarize episode reward --- this needs to be handled differently depending on whether the environment is reset after each iteration. Only count episodes that finish within the iteration.
episodes_start_end = []
for env_ind in range(self.n_envs):
env_steps = np.where(firsts_trajs[:, env_ind] == 1)[0]
for i in range(len(env_steps) - 1):
start = env_steps[i]
end = env_steps[i + 1]
if end - start > 1:
episodes_start_end.append((env_ind, start, end - 1))
if len(episodes_start_end) > 0:
reward_trajs_split = [
reward_trajs[start : end + 1, env_ind]
for env_ind, start, end in episodes_start_end
]
num_episode_finished = len(reward_trajs_split)
episode_reward = np.array(
[np.sum(reward_traj) for reward_traj in reward_trajs_split]
)
episode_best_reward = np.array(
[
np.max(reward_traj) / self.act_steps
for reward_traj in reward_trajs_split
]
)
avg_episode_reward = np.mean(episode_reward)
avg_best_reward = np.mean(episode_best_reward)
success_rate = np.mean(
episode_best_reward >= self.best_reward_threshold_for_success
)
else:
episode_reward = np.array([])
num_episode_finished = 0
avg_episode_reward = 0
avg_best_reward = 0
success_rate = 0
log.info("[WARNING] No episode completed within the iteration!")
# Update
if not eval_mode:
with torch.no_grad():
# Calculate value and logprobs - split into batches to prevent out of memory
obs_t = einops.rearrange(
torch.from_numpy(obs_trajs).float().to(self.device),
"s e h d -> (s e) h d",
)
obs_ts = torch.split(obs_t, self.logprob_batch_size, dim=0)
values_trajs = np.empty((0, self.n_envs))
for obs in obs_ts:
values = self.model.critic(obs).cpu().numpy().flatten()
values_trajs = np.vstack(
(values_trajs, values.reshape(-1, self.n_envs))
)
samples_t = einops.rearrange(
torch.from_numpy(samples_trajs).float().to(self.device),
"s e h d -> (s e) h d",
)
samples_ts = torch.split(samples_t, self.logprob_batch_size, dim=0)
logprobs_trajs = np.empty((0))
for obs, samples in zip(obs_ts, samples_ts):
logprobs = (
self.model.get_exact_logprobs(obs, samples).cpu().numpy()
)
logprobs_trajs = np.concatenate((logprobs_trajs, logprobs))
# normalize reward with running variance if specified
if self.reward_scale_running:
reward_trajs_transpose = self.running_reward_scaler(
reward=reward_trajs.T, first=firsts_trajs[:-1].T
)
reward_trajs = reward_trajs_transpose.T
# bootstrap value with GAE if not done - apply reward scaling with constant if specified
obs_venv_ts = torch.from_numpy(obs_venv).float().to(self.device)
with torch.no_grad():
next_value = (
self.model.critic(obs_venv_ts).reshape(1, -1).cpu().numpy()
)
advantages_trajs = np.zeros_like(reward_trajs)
lastgaelam = 0
for t in reversed(range(self.n_steps)):
if t == self.n_steps - 1:
nextnonterminal = 1.0 - done_venv
nextvalues = next_value
else:
nextnonterminal = 1.0 - dones_trajs[t + 1]
nextvalues = values_trajs[t + 1]
# delta = r + gamma*V(st+1) - V(st)
delta = (
reward_trajs[t] * self.reward_scale_const
+ self.gamma * nextvalues * nextnonterminal
- values_trajs[t]
)
# A = delta_t + gamma*lamdba*delta_{t+1} + ...
advantages_trajs[t] = lastgaelam = (
delta
+ self.gamma
* self.gae_lambda
* nextnonterminal
* lastgaelam
)
returns_trajs = advantages_trajs + values_trajs
# k for environment step
obs_k = einops.rearrange(
torch.tensor(obs_trajs).float().to(self.device),
"s e h d -> (s e) h d",
)
samples_k = einops.rearrange(
torch.tensor(samples_trajs).float().to(self.device),
"s e h d -> (s e) h d",
)
returns_k = (
torch.tensor(returns_trajs).float().to(self.device).reshape(-1)
)
values_k = (
torch.tensor(values_trajs).float().to(self.device).reshape(-1)
)
advantages_k = (
torch.tensor(advantages_trajs).float().to(self.device).reshape(-1)
)
logprobs_k = torch.tensor(logprobs_trajs).float().to(self.device)
# Update policy and critic
total_steps = self.n_steps * self.n_envs
inds_k = np.arange(total_steps)
clipfracs = []
for update_epoch in range(self.update_epochs):
# for each epoch, go through all data in batches
flag_break = False
np.random.shuffle(inds_k)
num_batch = max(1, total_steps // self.batch_size) # skip last ones
for batch in range(num_batch):
start = batch * self.batch_size
end = start + self.batch_size
inds_b = inds_k[start:end] # b for batch
obs_b = obs_k[inds_b]
samples_b = samples_k[inds_b]
returns_b = returns_k[inds_b]
values_b = values_k[inds_b]
advantages_b = advantages_k[inds_b]
logprobs_b = logprobs_k[inds_b]
# get loss
(
pg_loss,
v_loss,
clipfrac,
approx_kl,
ratio,
bc_loss,
) = self.model.loss(
obs_b,
samples_b,
returns_b,
values_b,
advantages_b,
logprobs_b,
use_bc_loss=self.use_bc_loss,
reward_horizon=self.reward_horizon,
)
loss = (
pg_loss
+ v_loss * self.vf_coef
+ bc_loss * self.bc_loss_coeff
)
clipfracs += [clipfrac]
# update policy and critic
self.actor_optimizer.zero_grad()
self.critic_optimizer.zero_grad()
loss.backward()
if self.itr >= self.n_critic_warmup_itr:
if self.max_grad_norm is not None:
torch.nn.utils.clip_grad_norm_(
self.model.actor_ft.parameters(), self.max_grad_norm
)
self.actor_optimizer.step()
self.critic_optimizer.step()
log.info(
f"approx_kl: {approx_kl}, update_epoch: {update_epoch}, num_batch: {num_batch}"
)
# Stop gradient update if KL difference reaches target
if self.target_kl is not None and approx_kl > self.target_kl:
flag_break = True
break
if flag_break:
break
# Explained variation of future rewards using value function
y_pred, y_true = values_k.cpu().numpy(), returns_k.cpu().numpy()
var_y = np.var(y_true)
explained_var = (
np.nan if var_y == 0 else 1 - np.var(y_true - y_pred) / var_y
)
# Plot state trajectories
if (
self.itr % self.render_freq == 0
and self.n_render > 0
and self.traj_plotter is not None
):
self.traj_plotter(
obs_full_trajs=obs_full_trajs,
n_render=self.n_render,
max_episode_steps=self.max_episode_steps,
render_dir=self.render_dir,
itr=self.itr,
)
# Update lr
if self.itr >= self.n_critic_warmup_itr:
self.actor_lr_scheduler.step()
self.critic_lr_scheduler.step()
# Save model
if self.itr % self.save_model_freq == 0 or self.itr == self.n_train_itr - 1:
self.save_model()
# Log loss and save metrics
run_results.append(
{
"itr": self.itr,
}
)
if self.save_trajs:
run_results[-1]["obs_full_trajs"] = obs_full_trajs
run_results[-1]["obs_trajs"] = obs_trajs
run_results[-1]["action_trajs"] = samples_trajs
run_results[-1]["chains_trajs"] = chains_trajs
run_results[-1]["reward_trajs"] = reward_trajs
if self.itr % self.log_freq == 0:
if eval_mode:
log.info(
f"eval: success rate {success_rate:8.4f} | avg episode reward {avg_episode_reward:8.4f} | avg best reward {avg_best_reward:8.4f}"
)
if self.use_wandb:
wandb.log(
{
"success rate - eval": success_rate,
"avg episode reward - eval": avg_episode_reward,
"avg best reward - eval": avg_best_reward,
"num episode - eval": num_episode_finished,
},
step=self.itr,
commit=False,
)
run_results[-1]["eval_success_rate"] = success_rate
run_results[-1]["eval_episode_reward"] = avg_episode_reward
run_results[-1]["eval_best_reward"] = avg_best_reward
else:
log.info(
f"{self.itr}: loss {loss:8.4f} | pg loss {pg_loss:8.4f} | value loss {v_loss:8.4f} | reward {avg_episode_reward:8.4f} | t:{timer():8.4f}"
)
if self.use_wandb:
wandb.log(
{
"loss": loss,
"pg loss": pg_loss,
"value loss": v_loss,
"approx kl": approx_kl,
"ratio": ratio,
"clipfrac": np.mean(clipfracs),
"explained variance": explained_var,
"avg episode reward - train": avg_episode_reward,
},
step=self.itr,
commit=True,
)
run_results[-1]["loss"] = loss
run_results[-1]["pg_loss"] = pg_loss
run_results[-1]["value_loss"] = v_loss
run_results[-1]["approx_kl"] = approx_kl
run_results[-1]["ratio"] = ratio
run_results[-1]["clip_frac"] = np.mean(clipfracs)
run_results[-1]["explained_variance"] = explained_var
run_results[-1]["train_episode_reward"] = avg_episode_reward
run_results[-1]["time"] = timer()
with open(self.result_path, "wb") as f:
pickle.dump(run_results, f)
self.itr += 1