119 lines
3.2 KiB
YAML
119 lines
3.2 KiB
YAML
defaults:
|
|
- _self_
|
|
hydra:
|
|
run:
|
|
dir: ${logdir}
|
|
_target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent
|
|
|
|
name: ${env_name}_m2_ft_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}_tdf${ft_denoising_steps}
|
|
logdir: ${oc.env:DPPO_LOG_DIR}/d3il-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
|
|
base_policy_path: ${oc.env:DPPO_LOG_DIR}/d3il-pretrain/m2/avoid_d57_r12_pre_diffusion_mlp_ta4_td20/2024-07-07_13-12-09/checkpoint/state_15000.pt
|
|
normalization_path: ${oc.env:DPPO_DATA_DIR}/d3il/avoid_m2/normalization.npz
|
|
|
|
seed: 42
|
|
device: cuda:0
|
|
env_name: avoiding-m5
|
|
mode: d57_r12 # M2, desired modes 5 and 7, required modes 1 and 2
|
|
obs_dim: 4
|
|
action_dim: 2
|
|
transition_dim: ${action_dim}
|
|
denoising_steps: 20
|
|
ft_denoising_steps: 10
|
|
cond_steps: 1
|
|
horizon_steps: 4
|
|
act_steps: 4
|
|
|
|
env:
|
|
n_envs: 50
|
|
name: ${env_name}
|
|
max_episode_steps: 100
|
|
reset_at_iteration: True
|
|
save_video: False
|
|
best_reward_threshold_for_success: 2
|
|
save_full_observations: True
|
|
wrappers:
|
|
d3il_lowdim:
|
|
normalization_path: ${normalization_path}
|
|
multi_step:
|
|
n_obs_steps: ${cond_steps}
|
|
n_action_steps: ${act_steps}
|
|
max_episode_steps: ${env.max_episode_steps}
|
|
pass_full_observations: ${env.save_full_observations}
|
|
reset_within_step: False
|
|
|
|
wandb:
|
|
entity: ${oc.env:DPPO_WANDB_ENTITY}
|
|
project: d3il-${env_name}-m2-finetune
|
|
run: ${now:%H-%M-%S}_${name}
|
|
|
|
train:
|
|
n_train_itr: 51
|
|
n_critic_warmup_itr: 1
|
|
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
|
gamma: 0.99
|
|
actor_lr: 1e-5
|
|
actor_weight_decay: 0
|
|
actor_lr_scheduler:
|
|
first_cycle_steps: 100
|
|
warmup_steps: 10
|
|
min_lr: 1e-5
|
|
critic_lr: 1e-3
|
|
critic_weight_decay: 0
|
|
critic_lr_scheduler:
|
|
first_cycle_steps: 100
|
|
warmup_steps: 10
|
|
min_lr: 1e-3
|
|
save_model_freq: 100
|
|
val_freq: 100 # no eval, always train mode
|
|
force_train: True
|
|
render:
|
|
freq: 1
|
|
num: 10
|
|
plotter:
|
|
_target_: env.plot_traj.TrajPlotter
|
|
env_type: avoid
|
|
normalization_path: ${normalization_path}
|
|
# PPO specific
|
|
reward_scale_running: True
|
|
reward_scale_const: 1.0
|
|
gae_lambda: 0.95
|
|
batch_size: ${eval:'round(${train.n_steps} * ${env.n_envs} / 2)'}
|
|
update_epochs: 10
|
|
vf_coef: 0.5
|
|
target_kl: 1
|
|
|
|
model:
|
|
_target_: model.diffusion.diffusion_ppo.PPODiffusion
|
|
# HP to tune
|
|
gamma_denoising: 0.95
|
|
clip_ploss_coef: 0.1
|
|
clip_ploss_coef_base: 0.1
|
|
clip_ploss_coef_rate: 1
|
|
randn_clip_value: 3
|
|
min_sampling_denoising_std: 0.1
|
|
min_logprob_denoising_std: 0.1
|
|
#
|
|
network_path: ${base_policy_path}
|
|
actor:
|
|
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
|
|
time_dim: 16
|
|
mlp_dims: [512, 512, 512]
|
|
activation_type: ReLU
|
|
residual_style: True
|
|
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
|
|
horizon_steps: ${horizon_steps}
|
|
transition_dim: ${transition_dim}
|
|
critic:
|
|
_target_: model.common.critic.CriticObs
|
|
obs_dim: ${obs_dim}
|
|
mlp_dims: [256, 256, 256]
|
|
activation_type: Mish
|
|
residual_style: True
|
|
ft_denoising_steps: ${ft_denoising_steps}
|
|
transition_dim: ${transition_dim}
|
|
horizon_steps: ${horizon_steps}
|
|
obs_dim: ${obs_dim}
|
|
action_dim: ${action_dim}
|
|
cond_steps: ${cond_steps}
|
|
denoising_steps: ${denoising_steps}
|
|
device: ${device} |