121 lines
3.2 KiB
YAML
121 lines
3.2 KiB
YAML
defaults:
|
|
- _self_
|
|
hydra:
|
|
run:
|
|
dir: ${logdir}
|
|
_target_: agent.finetune.train_ppo_diffusion_agent.TrainPPODiffusionAgent
|
|
|
|
name: ${env_name}_ft_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}_tdf${ft_denoising_steps}
|
|
logdir: ${oc.env:DPPO_LOG_DIR}/furniture-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}_${seed}
|
|
base_policy_path: ${oc.env:DPPO_LOG_DIR}/furniture-pretrain/lamp/lamp_med_dim_pre_diffusion_mlp_ta8_td100/2024-07-23_01-28-20/checkpoint/state_8000.pt
|
|
normalization_path: ${oc.env:DPPO_DATA_DIR}/furniture/${env.specific.furniture}_${env.specific.randomness}/normalization.pth
|
|
|
|
seed: 42
|
|
device: cuda:0
|
|
env_name: ${env.specific.furniture}_${env.specific.randomness}_dim
|
|
obs_dim: 44
|
|
action_dim: 10
|
|
transition_dim: ${action_dim}
|
|
denoising_steps: 100
|
|
ft_denoising_steps: 5
|
|
cond_steps: 1
|
|
horizon_steps: 8
|
|
act_steps: 8
|
|
use_ddim: True
|
|
|
|
env:
|
|
n_envs: 1000
|
|
name: ${env_name}
|
|
env_type: furniture
|
|
max_episode_steps: 1000
|
|
best_reward_threshold_for_success: 2
|
|
specific:
|
|
headless: true
|
|
furniture: lamp
|
|
randomness: med
|
|
normalization_path: ${normalization_path}
|
|
act_steps: ${act_steps}
|
|
sparse_reward: True
|
|
|
|
wandb:
|
|
entity: ${oc.env:DPPO_WANDB_ENTITY}
|
|
project: furniture-${env.specific.furniture}-${env.specific.randomness}-finetune
|
|
run: ${now:%H-%M-%S}_${name}
|
|
|
|
train:
|
|
n_train_itr: 1000
|
|
n_critic_warmup_itr: 1
|
|
n_steps: ${eval:'round(${env.max_episode_steps} / ${act_steps})'}
|
|
gamma: 0.999
|
|
actor_lr: 1e-5
|
|
actor_weight_decay: 0
|
|
actor_lr_scheduler:
|
|
first_cycle_steps: 10000
|
|
warmup_steps: 10
|
|
min_lr: 1e-6
|
|
critic_lr: 1e-3
|
|
critic_weight_decay: 0
|
|
critic_lr_scheduler:
|
|
first_cycle_steps: 10000
|
|
warmup_steps: 10
|
|
min_lr: 1e-3
|
|
save_model_freq: 50
|
|
val_freq: 10
|
|
render:
|
|
freq: 1
|
|
num: 0
|
|
# PPO specific
|
|
reward_scale_running: True
|
|
reward_scale_const: 1.0
|
|
gae_lambda: 0.95
|
|
batch_size: 8800
|
|
update_epochs: 5
|
|
vf_coef: 0.5
|
|
target_kl: 1
|
|
|
|
model:
|
|
_target_: model.diffusion.diffusion_ppo.PPODiffusion
|
|
# HP to tune
|
|
gamma_denoising: 0.9
|
|
clip_ploss_coef: 0.001
|
|
clip_ploss_coef_base: 0.001
|
|
clip_ploss_coef_rate: 3
|
|
randn_clip_value: 3
|
|
min_sampling_denoising_std: 0.04
|
|
#
|
|
use_ddim: ${use_ddim}
|
|
ddim_steps: ${ft_denoising_steps}
|
|
learn_eta: False
|
|
eta:
|
|
base_eta: 1
|
|
input_dim: ${obs_dim}
|
|
mlp_dims: [256, 256]
|
|
action_dim: ${action_dim}
|
|
min_eta: 0.1
|
|
max_eta: 1.0
|
|
_target_: model.diffusion.eta.EtaFixed
|
|
network_path: ${base_policy_path}
|
|
actor:
|
|
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
|
|
time_dim: 32
|
|
mlp_dims: [1024, 1024, 1024, 1024, 1024, 1024, 1024]
|
|
cond_mlp_dims: [512, 64]
|
|
use_layernorm: True # needed for larger MLP
|
|
residual_style: True
|
|
cond_dim: ${eval:'${obs_dim} * ${cond_steps}'}
|
|
horizon_steps: ${horizon_steps}
|
|
transition_dim: ${transition_dim}
|
|
critic:
|
|
_target_: model.common.critic.CriticObs
|
|
obs_dim: ${obs_dim}
|
|
mlp_dims: [512, 512, 512]
|
|
activation_type: Mish
|
|
residual_style: True
|
|
ft_denoising_steps: ${ft_denoising_steps}
|
|
transition_dim: ${transition_dim}
|
|
horizon_steps: ${horizon_steps}
|
|
obs_dim: ${obs_dim}
|
|
action_dim: ${action_dim}
|
|
cond_steps: ${cond_steps}
|
|
denoising_steps: ${denoising_steps}
|
|
device: ${device} |