dppo/cfg/gym/finetune/halfcheetah-v2/ft_awr_diffusion_mlp.yaml
2024-09-03 21:03:27 -04:00

102 lines
2.5 KiB
YAML

defaults:
- _self_
hydra:
run:
dir: ${logdir}
_target_: agent.finetune.train_awr_diffusion_agent.TrainAWRDiffusionAgent
name: ${env_name}_awr_diffusion_mlp_ta${horizon_steps}_td${denoising_steps}
logdir: ${oc.env:DPPO_LOG_DIR}/gym-finetune/${name}/${now:%Y-%m-%d}_${now:%H-%M-%S}
base_policy_path: ${oc.env:DPPO_LOG_DIR}/gym-pretrain/halfcheetah-medium-v2_pre_diffusion_mlp_ta4_td20/2024-06-12_23-04-42/checkpoint/state_3000.pt
normalization_path: ${oc.env:DPPO_DATA_DIR}/gym/${env_name}/normalization.npz
device: cuda:0
env_name: halfcheetah-medium-v2
obs_dim: 17
action_dim: 6
transition_dim: ${action_dim}
denoising_steps: 20
cond_steps: 1
horizon_steps: 4
act_steps: 4
env:
n_envs: 40
name: ${env_name}
max_episode_steps: 1000
reset_at_iteration: False
save_video: False
best_reward_threshold_for_success: 3
wrappers:
mujoco_locomotion_lowdim:
normalization_path: ${normalization_path}
multi_step:
n_obs_steps: ${cond_steps}
n_action_steps: ${act_steps}
max_episode_steps: ${env.max_episode_steps}
reset_within_step: True
wandb:
entity: ${oc.env:DPPO_WANDB_ENTITY}
project: gym-${env_name}-finetune
run: ${now:%H-%M-%S}_${name}
train:
n_train_itr: 1000
n_critic_warmup_itr: 0
n_steps: 500
gamma: 0.99
actor_lr: 1e-4
actor_weight_decay: 0
actor_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-4
critic_lr: 1e-3
critic_weight_decay: 0
critic_lr_scheduler:
first_cycle_steps: 1000
warmup_steps: 10
min_lr: 1e-3
save_model_freq: 100
val_freq: 10
render:
freq: 1
num: 0
# AWR specific
scale_reward_factor: 0.01
max_adv_weight: 100
beta: 10
buffer_size: 5000
batch_size: 256
replay_ratio: 64
critic_update_ratio: 4
model:
_target_: model.diffusion.diffusion_awr.AWRDiffusion
# Sampling HPs
min_sampling_denoising_std: 0.10
randn_clip_value: 3
#
network_path: ${base_policy_path}
actor:
_target_: model.diffusion.mlp_diffusion.DiffusionMLP
horizon_steps: ${horizon_steps}
transition_dim: ${transition_dim}
cond_dim: ${obs_dim}
time_dim: 16
mlp_dims: [512, 512, 512]
activation_type: ReLU
residual_style: True
critic:
_target_: model.common.critic.CriticObs
obs_dim: ${obs_dim}
mlp_dims: [256, 256, 256]
activation_type: Mish
residual_style: True
horizon_steps: ${horizon_steps}
obs_dim: ${obs_dim}
action_dim: ${action_dim}
transition_dim: ${transition_dim}
denoising_steps: ${denoising_steps}
device: ${device}